BACKGROUND: Myelophil is a standardized ethanol extract of Astragali Radix and Salviae Miltiorrhizae Radix, which has been developed based on clinical experience in traditional Korean medicine practices for patients with unexplained chronic fatigue, including myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Our previous studies demonstrated Myelophil's clinical efficacy in ME/CFS, as well as its brain-related activities in animal models. However, the underlying pharmacological mechanisms remain unclear. Recently, we identified serotonergic hyperactivity as a key pathophysiological factor in central fatigue, such as ME/CFS. Therefore, in the present study, we aimed to investigate the mechanisms by which Myelophil exerts its effects, particularly in the context of a 5-HTergic hyperactivity model. METHOD: To verify the action mechanisms of Myelophil on serotonergic hyperactivity condition, we herein assessed its anti-central fatigue properties using a fluoxetine-treated mice model. Male C57BL/6Â N mice (9 weeks old) were subjected to periodic intraperitoneal (IP) injections of fluoxetine for 4 weeks and the mice were simultaneously oral administered Myelophil (0, 50, or 100Â mg/kg) or ascorbic acid (100Â mg/kg). RESULT: Four-week injection of fluoxetine notably increased serotonin (5-hydroxytryptamine, 5-HT) activity, as evidenced by immunofluorescence staining and Western blot assays in the raphe nuclei (RN), and induced central fatigue-like behaviors in the nest building test, wheel running test, rota-rod test, plantar test, and open field test. Meanwhile, Myelophil (100Â mg/kg) administration significantly ameliorated those fatigue-related behaviors including pain sensitivity. Furthermore, the anti-fatigue effects of Myelophil were corroborated by changes in serotonin-related parameters (serotonin transporter; 5-HTT and vesicular monoamine transporter 2; VMAT2), as well as neurotrophic markers including c-Fos and brain-derived neurotrophic factor (BDNF) in the RN. CONCLUSION: These results provide experimental evidence suggesting the potential mechanisms by which Myelophil may alleviate central fatigue associated with hyper-5-HTergic activity. CLINICAL TRIAL NUMBER: Not applicable.
Anti-central fatigue effects of myelophil in 5-HTergic hyperactivity mice model.
髓母细胞在 5-HT 能过度活跃小鼠模型中发挥抗中枢性疲劳作用
阅读:7
作者:Kang Ji-Yun, Baek Dong-Cheol, Lee Jin-Seok, Son Chang-Gue
| 期刊: | BMC Complementary and Alternative Medicine | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 23; 25(1):153 |
| doi: | 10.1186/s12906-025-04882-2 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
