Translocator protein 18 kDA (TSPO) imaging using positron emission tomography (PET) is widely used to assess neuroinflammation in Alzheimer's disease (AD). However, the significance of the increase in brain TSPO levels in AD pathophysiology is not known. Here, we show that in the 5XFAD transgenic mouse model, brain TSPO levels increase in an age-, brain region-, and sex-dependent fashion. TSPO levels were first increased in the subiculum at 1.5 months of age in male and female 5XFAD mice compared to wildtype mice. The TSPO increase in the subiculum of 1.5-month 5XFAD mice coincided with the appearance of Aβ aggregation and increased serum Aβ(1-42)/Aβ(1-40) ratio which occurred prior to increased serum neurofilament light chain (Nfl) levels and well before cognitive function deficits. We also discovered that the brain TSPO increase was driven by an expansion of activated microglia in contact with Aβ-plaques, that also expressed higher TSPO levels per microglia than microglia not in contact with plaques. While overall, astrocytes were highly activated, the increased TSPO signal in the 5XFAD mouse brain did not increase in astrocytes. We also compared the 5XFAD mouse findings to postmortem human brain tissue from early-onset autosomal-dominant Presenilin 1 (PSEN1)-E280A mutation AD cases. The results in PSEN1-E280A cases confirmed the 5XFAD mouse findings relevant to increased TSPO levels and an increase in TSPO per microglia contacting Aβ-plaques. In summary, TSPO is an early biomarker of neuroinflammation in the AD brain that first increases in the subiculum simultaneously with increased Aβ aggregation and serum Aβ(1-42)/Aβ(1-40) ratio. The increased TSPO response in the 5XFAD mouse brain and in the brain from PSEN1-E280A mutation AD cases reflects Aβ-plaque-associated microglia with a high TSPO content. This microglia subtype is likely to promote the progression of AD pathology, neurodegeneration, and cognitive decline and their high TSPO content may serve as a target for TSPO ligand-based therapy.
Amyloid-β plaque-associated microglia drive TSPO upregulation in Alzheimer's disease.
阿尔茨海默病中,淀粉样β斑块相关的小胶质细胞驱动TSPO上调
阅读:5
作者:Martinez-Perez Daniel A, McGlothan Jennifer L, Rodichkin Alexander N, Abilmouna Karam, Bursac Zoran, Lopera Francisco, Villegas-Lanau Carlos Andres, Guilarte Tomás R
| 期刊: | Acta Neuropathologica | 影响因子: | 9.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 17; 150(1):6 |
| doi: | 10.1007/s00401-025-02912-4 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
