Phenotypic transition of pulmonary artery smooth muscle cells (PASMCs) under hypoxic conditions, which in turn causes increased proliferation and migration capacity, is an important pathological process in Hypoxic pulmonary hypertension (HPH). Although research on the phenotypic transition of PASMCs has been ongoing, little is known about the specific molecular mechanisms underlying this process. Integrin-linked kinase (ILK) is one of the genes essential for maintaining the contractile phenotype of vascular smooth muscle cells (VSMCs). It has been shown that ILK is a target gene of MiR-542-3p, and overexpression of MiR-542-3p can promote apoptosis of osteosarcoma cells by downregulating the expression of ILK, and inhibit their cell proliferation, migration, and invasion. In this study we found that hypoxia upregulated MiR-542-3p expression, and MiR-542-3p mimics reduced ILK, Myocardin expression, and promote phenotypic transition in PASMCs. And, ILK was a direct target of MiR-542-3p in PASMCs. MiR-542-3p inhibitor reversed hypoxia-induced reduction of ILK and Myocardin expression in PASMCs, and phenotypic transition, proliferation, and migration of PASMCs. MiR-542-3p antagomir reversed hypoxia-induced pulmonary vascular remodeling and also reversed hypoxia-induced reduction in ILK, Myocardin expression, and phenotype transition in rat pulmonary arteries. Thus, our results suggest that hypoxia induced an increase in MiR-542-3p expression, which caused an increase in binding to ILK gene and negatively regulated ILK expression. This in turn, caused a decrease in Myocardin expression leading to phenotypic transition, proliferation, and increased migration of PASMCs, causing hypoxic pulmonary vascular remodeling and ultimately leading to HPH.
Role of MiR-542-3p/Integrin-Linked Kinase/Myocardin Signaling Axis in Hypoxic Pulmonary Hypertension.
miR-542-3p/整合素连接激酶/心肌蛋白信号轴在缺氧性肺动脉高压中的作用
阅读:18
作者:Li Linqing, Zhou Weining, Ji Qingrong, Zhang Xianzhao, Yang Ni, Song Kaiyou, Hu Shunpeng, Liu Cunfei, Ou Zhihong, Zhang Fengwei, Wei Yuda, Hou Jiantong
| 期刊: | Pulmonary Circulation | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 May 6; 15(2):e70094 |
| doi: | 10.1002/pul2.70094 | 研究方向: | 心血管 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
