Single-cell RNA sequencing reveals a new mechanism of endothelial cell heterogeneity and healing in diabetic foot ulcers.

单细胞 RNA 测序揭示了糖尿病足溃疡内皮细胞异质性和愈合的新机制

阅读:9
作者:Zhao Songyun, Yu Hua, Li Zihao, Chen Wanying, Liu Kaibo, Dai Hao, Wang Gaoyi, Zhang Zibing, Xie Jiaheng, He Yucang, Li Liqun
Diabetic foot ulcers (DFU) are a common and severe complication among diabetic patients, posing a significant burden on patients' quality of life and healthcare systems due to their high incidence, amputation rates, and mortality. This study utilized single-cell RNA sequencing technology to deeply analyze the cellular heterogeneity of the skin on the feet ofDFU patients and the transcriptomic characteristics of endothelial cells, aiming to identify key cell populations and genes associated with the healing and progression of DFU. The study found that endothelial cells from DFU patients exhibited significant transcriptomic differences under various conditions, particularly in signaling pathways related to inflammatory responses and angiogenesis. Through trajectory analysis and cell communication research, we revealed the key role of endothelial cell subsets in the development of DFU and identified multiple important gene modules associated with the progression of DFU. Notably, the promoting effect of the SH3BGRL3 gene on endothelial cell proliferation, migration, and angiogenic capabilities under high glucose conditions was experimentally verified, providing a new potential target and theoretical basis for the treatment of DFU. This study not only enhances the understanding of the pathogenesis ofDFU but also provides a scientific basis for the development ofnew therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。