Exosomes derived from ccRCC cells confers fibroblasts activation to foster tumor progression through Warburg effect by downregulating PANK3.

源自 ccRCC 细胞的外泌体通过下调 PANK3 的 Warburg 效应激活成纤维细胞,从而促进肿瘤进展

阅读:4
作者:Yang Yang, Qiang Cheng, Jie Zhu, Ce Han, Yan Huang, Xiu-Bin Li, Wen-Mei Fan, Xu Zhang, Yu Gao
The interaction between tumor-derived exosomes and stroma plays a crucial role in tumor progression. However, the mechanisms through which tumor cells influence stromal changes are not yet fully understood. In our study, through single-cell sequencing analysis of clear cell renal cell carcinoma tissues at varying stages of progression, we determined that the proportion of cancer-associated fibroblasts (CAFs) in advanced renal cell carcinoma tissues was notably higher compared to localized renal cell carcinoma tissues. Comparison of transcriptome sequencing and energy metabolism tests between CAFs primarily isolated from advanced renal cell carcinoma tissues and normal fibroblasts (NFs) revealed the occurrence of the Warburg effect during the fibroblast activation process. Additionally, we observed an increase in glucose transporter GLUT1 expression, total reactive oxygen species (ROS) levels, lactic acid production, and subsequent excretion of excess lactic acid through monocarboxylate transporter-4 (MCT4) in CAFs. Interestingly, renal cancer cells were found to uptake lactic acid via MCT1 upon interaction with CAFs, thereby enhancing their malignant phenotypes. Furthermore, the down-regulation of PANK3 induced by exosomes derived from renal cancer cells was identified as a crucial step in fibroblast activation. These findings indicate that exosomes play a role in facilitating intercellular communication between renal cancer cells and fibroblasts. Targeting this communication pathway could potentially offer new strategies for the prevention and treatment of advanced renal cell carcinoma.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。