In sepsis, immunosuppression is commonly observed as lipopolysaccharide (LPS) tolerance in macrophages. Leukocyte immunoglobulin-like receptor B2 (LILRB2) is an inhibitory receptor on immune cells that may play a crucial role in the immunosuppressive phenotype of LPS-tolerant macrophages, although its exact function in sepsis remains unclear. In this study, macrophages were exposed to single or sequential LPS doses to induce LPS stimulation or tolerance. Cell viability was assessed using CCK-8 assay, apoptosis, and macrophage polarization were detected by flow cytometry, and pro-inflammatory cytokine levels were measured by RT-qPCR and ELISA. Molecular interactions were explored using Co-IP, ChIP, and dual-luciferase assays, while mRNA and protein expression were assessed by RT-qPCR and Western blotting. The results showed that LILRB2 was upregulated in macrophages following LPS stimulation, with a more significant increase in the LPS-tolerant group. Knocking down LILRB2 reversed the immunosuppressive phenotype of LPS-tolerant macrophages and restored the inhibition of MyD88/NF-κB signaling and p65 nuclear translocation caused by LPS tolerance. Mechanistically, LILRB2 interacted with Toll-like receptor 8 (TLR8) to inhibit the MyD88/NF-κB signaling pathway in LPS-tolerant macrophages. Furthermore, the upregulation of the Spi-1 proto-oncogene (SPI1) enhanced the immunosuppressive phenotype by transcriptionally activating LILRB2. In conclusion, SPI1 upregulation promoted the immunosuppressive phenotype of LPS-tolerant macrophages by activating LILRB2 transcription, which inhibited TLR8-mediated MyD88/NF-κB signaling. This study clarifies the role of LILRB2 and its underlying mechanisms in LPS-tolerant macrophages.
SPI1 upregulated LILRB2 to enhance the immunosuppressive phenotype of LPS-tolerant macrophages by inhibiting TLR8-mediated MyD88/NF-κB signaling.
SPI1 上调 LILRB2,通过抑制 TLR8 介导的 MyD88/NF-κB 信号传导,增强 LPS 耐受巨噬细胞的免疫抑制表型
阅读:4
作者:Bai Ruojing, Guo Jun
| 期刊: | Biology Direct | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 23; 20(1):73 |
| doi: | 10.1186/s13062-025-00669-0 | 研究方向: | 细胞生物学 |
| 信号通路: | NF-κB | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
