[MiR-671-5p negatively regulates SMAD3 to inhibit migration and invasion of osteosarcoma cells].

[MiR-671-5p 负调控 SMAD3 以抑制骨肉瘤细胞的迁移和侵袭]

阅读:3
作者:Hu Y, Liang D, Chen X, Chen L, Bai J, Li H, Yin C, Zhong W
OBJECTIVE: To explore the role of miR-671-5p in regulating the migration and invasion of osteosarcoma and the underlying mechanisms. METHODS: The differentially expressed microRNAs (miRNAs) in osteosarcoma were screened in the NCBI online database, and the target proteins of these miRNAs were predicted and their functions were analyzed. Osteosarcoma cells were transfected with a plasmid overexpressing miR-671-5p, and the transfection efficiency was assessed using quantitative real-time PCR (qRT-PCR). The changes in the migration and invasion of the transfected cells were examined with Transwell assay, and the expressions of proteins related with epithelial-mesenchymal transition (EMT) were detected using Western blotting. Dual-luciferase reporter assay was performed to determine whether the 3'UTR of SMAD3 contained a targeted binding site of miR-671-5p. RESULTS: MiR-671-5p was significantly down-regulated in both osteosarcoma tissues and osteosarcoma cells (P < 0.05). The osteosarcoma cells overexpressing miR-671-5p showed significantly reduced migration and invasion abilities (P < 0.05) with obviously lowered expressions of EMT-related proteins (P < 0.05). SMAD3 was highly expressed in osteosarcoma cells (P < 0.05), and dual-luciferase reporter assay confirmed the presence of a targeted binding site between miR-671-5p and the 3'UTR of SMAD3 (P < 0.05). In osteosarcoma cells transfected with a SMAD3-overexpressing plasmid (P < 0.05), the high expression of SMAD3 significantly inhibited by miR-671-5p overexpression (P < 0.05). Transwell assay demonstrated that SMAD3 overexpression significantly promoted the migration and invasion of osteosarcoma cells (P < 0.05), and while miR-671-5p overexpression obviously reversed this effect (P < 0.05). CONCLUSION: MiR-671-5p can inhibit the invasion and migration of osteosarcoma cells by negatively regulating SMAD3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。