Diabetic retinopathy (DR) is a serious long-term complication of diabetes. However, the current treatment of DR is still challenging. We aimed to investigate the role of lncRNA SNHG1/miR-340-5p/PIK3CA in DR and the mechanisms involved. Blood samples from clinical DR patients and healthy subjects were obtained. HRMECs were induced by high glucose for 24âh to establish the DR model. The vector for interfering or overexpressing lncRNA SNHG1, miR-340-5p, and PIK3CA was constructed. LncRNA SNHG1, miR-340-5p, and PIK3CA expressions were detected by qRT-PCR or Western blot. Cell proliferation and migration were detected by CCK-8 and Transwell assays. Blood vessel formation was detected by angiogenesis assay. Dual-luciferase reporter assay tested the interaction of lncRNA SNHG1 with miR-340-5p and miR-340-5p with PIK3CA. RIP measured the binding of miR-340-5p to PIK3CA. In the blood of DR patients and the DR model, lncRNA SNHG1 was increased and miR-340-5p expression was down-regulated. In the DR model, PIK3CA expression was elevated. Downregulation of lncRNA SNHG1 inhibited HRMECs proliferation, migration, and angiogenesis. LncRNA SNHG1 interacted with miR-340-5p, and up-regulation of miR-340-5p inhibited HRMECs proliferation, migration and angiogenesis. The inhibition of cell proliferation, migration, and angiogenesis of HRMECs caused by down-regulation of lncRNA SNHG1 was reversed by knockdown of miR-340-5p. miR-340-5p targeted PIK3CA, and downregulation of PIK3CA inhibited HRMECs proliferation, migration, and angiogenesis. The inhibition of HRMECs proliferation, migration and angiogenesis caused by down-regulation of lncRNA SNHG1 could be reversed by overexpression of PIK3CA. LncRNA SNHG1 targeted miR-340-5p/PIK3CA axis to regulate microvascular endothelial cell proliferation, migration, and angiogenesis in DR.
LncRNA SNHG1 targets miR-340-5p/PIK3CA axis to regulate microvascular endothelial cell proliferation, migration, and angiogenesis in DR.
LncRNA SNHG1 靶向 miR-340-5p/PIK3CA 轴,调节糖尿病视网膜病变中的微血管内皮细胞增殖、迁移和血管生成
阅读:7
作者:He Fu-Tao, Fu Xiao-Lin, Li Mo-Han, Fu Chun-Yan, Chen Jian-Zhi
| 期刊: | Kaohsiung Journal of Medical Sciences | 影响因子: | 3.100 |
| 时间: | 2023 | 起止号: | 2023 Jan;39(1):16-25 |
| doi: | 10.1002/kjm2.12625 | 研究方向: | 细胞生物学 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
