Intervertebral disc degeneration (IVDD) and its attendant lower back pain are a major medical challenge. Ferroptosis has become a new target for the treatment of IVDD. Mesenchymal stem cells (MSCs) are a promising regenerative therapy for IVDD. Hydrogel is usually used as a delivery carrier for MSCs. This study investigated the effect of bone mesenchymal stem cells (BMSCs) in IVDD by magnetic resonance imaging (MRI) and hematoxylin and eosin (HE) staining analysis using a rat-punctured IVDD model. A vitro model of tert-butyl hydroperoxide (TBHP)-induced oxidative stress injury in annulus fibrosus cells (AFCs) was used to explore the underlying molecular mechanisms. Cell viability was detected by cell counting kit-8 assay. Ferroptosis was assessed by measuring the levels of LDH, Fe(2+), glutathione, lipid reactive oxygen species, and malondialdehyde. The underlying mechanism was investigated by western blot and phosphor-kinase array. Results suggested that BMSCs inhibited TBHP-induced ferroptosis and the phosphorylated levels of STAT3 in AFCs. The activation of STAT3 (colivelin, a specific agonist for STAT3) reversed the effects on the ferroptosis of BMSCs. Additionally, BMSCs alleviated IVDD progression based on matrix hydrogels, while colivelin abolished the protective effects of BMSCs-encapsulated hydrogels on IVDD. In short, BMSCs inhibited oxidative stress-induced AFCs ferroptosis, thereby alleviating IVDD, which is associated with inhibited STAT3 activation. This study demonstrated the possible underlying mechanism by which BMSCs mitigate IVDD and may provide a new therapeutic idea for IVDD.
Bone mesenchymal stem cells based on matric hydrogels attenuate intervertebral disc degeneration by suppressing oxidative stress-induced ferroptosis.
基于基质水凝胶的骨髓间充质干细胞通过抑制氧化应激诱导的铁死亡来减轻椎间盘退变
阅读:2
作者:Fu Song, Lv Renhua, Wang Longqiang, Wang Zhenyu, Wang Fengming, Gao Hao, Zhao Wei, Huang Xiaoling, Li Xiaojun, Wang Yanan
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 2; 15(1):15378 |
| doi: | 10.1038/s41598-025-00278-x | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
