Link N Directly Targets IL-1β to Suppress Inflammation and Regulate Sensory Pain in Intervertebral Disc Degeneration.

Link N 直接靶向 IL-1β 以抑制炎症并调节椎间盘退变中的感觉疼痛

阅读:13
作者:Grant Michael P, Alad Muskan, Yousef Fajer, Epure Laura M, Antoniou John, Mwale Fackson
Intervertebral disc (IVD) disease is typically characterized by the degradation of IVD tissue, secretion of inflammatory and painful factors, and hyperinnervation of the disc. The pro-inflammatory cytokine interleukin-1β (IL-1β) has been regarded as a principal factor in orchestrating disc degeneration. Link N (LN) is a peptide derived from the link protein that has been shown to promote extracellular disc regeneration even in an inflammatory milieu; however, no mechanism(s) has been described for their behaviour to date. Building on prior studies on LN, we hypothesize that LN directly inhibits IL-1β. IVD degeneration was experimentally induced in New Zealand white rabbits, followed by the injection of either sLN or saline as the vehicle control. To determine the expression of markers of pain, histology was performed. Cultured human Nucleus Pulposus disc cells (hNP) were used to determine the effects of LN on IL-1β-induced changes in gene expression, including the effects on IL-1β, TNFα, and IL6 signalling. Isolated murine dorsal root ganglia (DRG) neurons were used to assess the effect of LN on IL-1β-induced neuronal hyperactivity. LN significantly reduced IL-1β-induced NF-κB activation in a dose-dependent manner in disc cells and was further able to modulate IL-1β-induced gene expression, inflammatory mediators, and neurotrophic factors. Peptide docking simulations revealed that LN could interact with IL-1β. A direct interaction of LN and IL-1β was revealed through co-immunoprecipitation experiments. Although IL-1β was able to hypersensitize DRG neurons following a seven-day exposure, as demonstrated by Ca(2+) imaging, this effect was significantly blunted when co-treated with LN. LN demonstrates a novel mechanism of action by directly inhibiting IL-1β, in addition to mitigating IL-1β-induced hypersensitivity in DRG neurons. These data suggest a potential role for LN in reducing discogenic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。