Extracellular vesicles (EVs) are cell-derived vesicles secreted by all cell types into the extracellular spaces. EVs comprise a heterogenous population of vesicles that carry bioactive molecules, such as proteins, lipids, and RNAs, which they can deliver to recipient cells. Over the past few years, EVs have been recognized for their vital role in intercellular communication, and thereby in various physiological and pathological processes. In addition, EVs are increasingly being studied as potential drug delivery vehicles. It is therefore crucial to understand the mechanisms and molecular players underlying EV uptake and functional cargo delivery. Several studies have investigated various EV uptake pathways; nonetheless, molecular mechanisms governing uptake and cargo transfer remain largely lacking. Here, we show, using a CRISPR/Cas9-mediated reporter system, that integrin β1 on recipient cells plays an important role in EV uptake and EV-mediated RNA delivery. Additionally, using both RNA interference and blocking antibodies, we show that association of integrin β1 with integrin α4 is essential for this process. We demonstrate that α4β1 on recipient cells interacts with EVs through surface localized fibronectin via binding to its leucine-aspartic acid-valine motif, and that blocking of this interaction reduces both EV uptake and RNA delivery. Thus, we identify a key mechanism in EV uptake and cargo delivery which could potentially facilitate research into EV biology and pave the way for the development of novel therapeutic approaches by targeting pathways that lead to functional cargo delivery.
Integrin beta 1 and fibronectin mediate extracellular vesicle uptake and functional RNA delivery
整合素β1和纤连蛋白介导细胞外囊泡的摄取和功能性RNA的递送
阅读:1
作者:Omnia M Elsharkasy ,Willemijn S de Voogt ,Maria Laura Tognoli ,Leanne van der Werff ,Jerney J Gitz-Francois ,Cornelis W Seinen ,Raymond M Schiffelers ,Olivier G de Jong ,Pieter Vader
| 期刊: | Journal of Biological Chemistry | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Mar;301(3):108305. |
| doi: | 10.1016/j.jbc.2025.108305 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
