BACKGROUND: The duodenum plays a significant role in metabolic regulation, and thickened mucous membranes are associated with insulin resistance. Duodenal mucosal resurfacing (DMR), a new-style endoscopic procedure using hydrothermal energy to ablate this thickened layer, shows promise for enhancing glucose and lipid metabolism in type 2 diabetes (T2D) patients. However, the mechanisms driving these improvements remain largely unexplored. AIM: To investigate the mechanisms by which DMR improves metabolic disorders using a rat model. METHODS: Rats with T2D underwent a revised DMR procedure via a gastric incision using a specialized catheter to abrade the duodenal mucosa. The duodenum was evaluated using histology, immunofluorescence, and western blotting. Serum assays measured glucose, lipid profiles, lipopolysaccharide, and intestinal hormones, while the gut microbiota and metabolomics profiles were analyzed through 16S rRNA gene sequencing and ultra performance liquid chromatography-mass spectrum/mass spectrum, severally. RESULTS: DMR significantly improved glucose and lipid metabolic disorders in T2D rats. It increased the serum levels of cholecystokinin, gastric inhibitory peptide, and glucagon-like peptide 1, and reduced the length and depth of duodenal villi and crypts. DMR also enhanced the intestinal barrier integrity and reduced lipopolysaccharide translocation. Additionally, DMR modified the gut microbiome and metabolome, particularly affecting the Blautia genus. Correlation analysis revealed significant links between the gut microbiota, metabolites, and T2D phenotypes. CONCLUSION: This study illustrates that DMR addresses metabolic dysfunctions in T2D through multifaceted mechanisms, highlighting the potential role of the Blautia genus on T2D pathogenesis and DMR's therapeutic impact.
Role of duodenal mucosal resurfacing in controlling diabetes in rats.
十二指肠黏膜修复在控制大鼠糖尿病中的作用
阅读:9
作者:Nie Li-Juan, Cheng Zhe, He Yi-Xian, Yan Qian-Hua, Sun Yao-Huan, Yang Xin-Yi, Tian Jie, Zhu Peng-Fei, Yu Jiang-Yi, Zhou Hui-Ping, Zhou Xi-Qiao
| 期刊: | World Journal of Diabetes | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 15; 16(3):102277 |
| doi: | 10.4239/wjd.v16.i3.102277 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
