Temporal lobe epilepsy (TLE) leads to extensive degradation of the quality of life of patients. Glycyrrhizic acid (GA) has been reported to exert neuroprotective effects on status epilepticus. Herein, the current study set out to explore the functional mechanism of GA in TLE young rats. Firstly, TLE young rat models were established using the lithium chloride and pilocarpine regimen and then subjected to treatment with different doses of GA, miR-194-5p-antagomir, or/and sh-prostaglandin-endoperoxide synthase 2 (PTGS2) to observe changes in iron content, glutathione and malondialdehyde levels, and GPX4 (glutathione peroxidase 4) and PTGS2 protein levels in the hippocampus. Neuronal injury and apoptosis were assessed through HE, Nissl, and TUNEL staining. Additionally, the expression patterns of miR-194-5p were detected. The binding site of miR-194-5p and PTGS2 was verified with a dual-luciferase assay. Briefly, different doses of GA (20, 40, and 60âmg/kg) reduced the epileptic score, frequency, and duration in TLE young rats, along with reductions in iron content, lipid peroxidation, neuronal injury, and apoptosis in the hippocampus. Silencing of miR-194-5p partly annulled the action of GA on inhibiting ferroptosis and attenuating neuronal injury in TLE young rats. Additionally, PTGS2 was validated as a target of miR-194-5p. GA inhibited ferroptosis and ameliorated neuronal injury in TLE young rats via the miR-194-5p/PTGS2 axis. Overall, our findings indicated that GA exerts protective effects on TLE young rats against neuronal injury by inhibiting ferroptosis through the miR-194-5p/PTGS2 axis.
Glycyrrhizic acid protects against temporal lobe epilepsy in young rats by regulating neuronal ferroptosis through the miR-194-5p/PTGS2 axis.
甘草酸通过 miR-194-5p/PTGS2 轴调节神经元铁死亡,从而保护幼鼠免受颞叶癫痫的侵害
阅读:9
作者:Yi Ting-Ting, Zhang Li-Mei, Huang Xiang-Nan
| 期刊: | Kaohsiung Journal of Medical Sciences | 影响因子: | 3.100 |
| 时间: | 2023 | 起止号: | 2023 Feb;39(2):154-165 |
| doi: | 10.1002/kjm2.12642 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
