Network Pharmacology, Molecular Dynamics Simulation, and Biological Validation Insights into the Potential of Ligustri Lucidi Fructus for Diabetic Nephropathy.

网络药理学、分子动力学模拟和生物学验证对女贞子治疗糖尿病肾病潜力的见解

阅读:5
作者:Liu Manting, Gu Yuhao, Yang Yuchang, Zhang Ke, Yang Jingwen, Wang Wenqi, Li Wenjing, Wang Xinzhu, Dong Xiaoxv, Yin Xingbin, Qu Changhai, Ni Boran, Ni Jian
Diabetic nephropathy (DN) represents a severe microvascular complication of diabetes mellitus. As a Traditional Chinese Medicine (TCM) with extensive clinical applications, Ligustri Lucidi Fructus (LLF) exhibits significant anti-DN activity. However, the underlying pharmacological mechanisms, crucial components, and targets for LLF in DN treatment remain unclear. By integrating network pharmacology, molecular docking, and molecular dynamics simulations, the bioactive compounds, potential therapeutic targets, and underlying mechanisms of LLF in the treatment of DN were elucidated, followed by biological validation in a palmitic acid (PA)-induced MPC5 podocyte injury model. Among the 383 DN-related LLF targets identified, TNF emerged as a pivotal one, demonstrating potential binding interaction with the active components salidroside (Sal), apigenin (Api), and tormentic acid (TA). Moreover, Gene Expression Omnibus (GEO) database and KEGG enrichment analysis collectively highlighted the cytosolic DNA-sensing pathway. Notably, the cGAS-STING pathway is central to this pathway. Experimental studies further demonstrated that LLF-containing serum exerted a protective effect on MPC5 podocytes through cGAS-STING pathway suppression. Overall, these findings elucidate the pleiotropic mechanisms underlying LLF's protective effects against DN, integrating compound-target-pathway interactions and thus offering a rationale for further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。