Superparamagnetic Iron Oxide-Erastin-Polyethylene Glycol Nanotherapeutic Platform: A Ferroptosis-Based Approach for the Integrated Diagnosis and Treatment of Nasopharyngeal Cancer.

超顺磁性氧化铁-Erastin-聚乙二醇纳米治疗平台:基于铁死亡的鼻咽癌综合诊断和治疗方法

阅读:5
作者:Tang Haonan, Zhou Xiao, Liu Lijuan, Wang Ziyu, Wang Chen, Luo Ningbin, Jin Guanqiao
Erastin can induce ferroptosis in tumor cells as an effective small molecule inhibitor. However, its application is hampered by a lack of water solubility. This study investigated the effects of superparamagnetic iron oxide (SPIO)-erastin-polyethylene glycol (PEG) nanoparticles prepared by loading SPIO-PEG nanoparticles with erastin on ferroptosis. SPIO-erastin-PEG nanoparticles exhibited square and spherical shapes with good dispersibility. The zeta potential and hydrodynamic size of SPIO-erastin-PEG were measured as (-37.68 ± 2.706) mV and (45.75 ± 18.88) nm, respectively. On T(2)-weighted imaging, the nanosystem showed significant contrast enhancement compared to no-enhancement magnetic resonance imaging (MRI). SPIO-erastin-PEG induced ferroptosis by increasing reactive oxygen species and iron content and promoting the accumulation of lipid peroxides and the degradation of glutathione peroxidase 4. Pharmacokinetic experiments revealed a half-life of 1.25 ± 0.05 h for the SPIO-erastin-PEG solution in circulation. Moreover, significant antitumorigenic effects of SPIO-erastin-PEG have been demonstrated in 5-8F cells and mouse-bearing tumors. These results indicated that the synthesized SPIO-erastin-PEG nanoplatform could induce ferroptosis effects in vitro and in vivo while exhibiting favorable physical characteristics. This approach may provide a new strategy for theranostic nanoplatform for nasopharyngeal cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。