BACKGROUND: Repeat-induced epigenetic changes are observed in many repeat expansion disorders (REDs). These changes result in transcriptional deficits and/or silencing of the associated gene. MSH2, a mismatch repair protein that is required for repeat expansion in the REDs, has been implicated in the maintenance of DNA methylation seen in the region upstream of the expanded CTG repeats at the DMPK locus in myotonic dystrophy type 1 (DM1). Here, we investigated the role of MSH2 in aberrant DNA methylation in two additional REDs, fragile X syndrome (FXS) that is caused by a CGG repeat expansion in the 5' untranslated region (UTR) of the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene, and Friedreich's ataxia (FRDA) that is caused by a GAA repeat expansion in intron 1 of the frataxin (FXN) gene. RESULTS: In contrast to what is seen at the DMPK locus in DM1, loss of MSH2 did not decrease DNA methylation at the FMR1 promoter in FXS embryonic stem cells (ESCs) or increase FMR1 transcription. This difference was not due to the differences in the CpG density of the two loci as a decrease in DNA methylation was also not observed in a less CpG dense region upstream of the expanded GAA repeats in the FXN gene in MSH2 null induced pluripotent stem cells (iPSCs) derived from FRDA patient fibroblasts. Surprisingly, given previous reports, we found that FMR1 reactivation was associated with a high frequency of MSH2-independent CGG-repeat contractions that resulted a permanent loss of DNA methylation. MSH2-independent GAA-repeat contractions were also seen in FRDA cells. CONCLUSIONS: Our results suggest that there are mechanistic differences in the way that DNA methylation is maintained in the region upstream of expanded repeats among different REDs even though they share a similar mechanism of repeat expansion. The high frequency of transcription-induced MSH2-dependent and MSH2-independent contractions we have observed may contribute to the mosaicism that is frequently seen in carriers of FMR1 alleles with expanded CGG-repeat tracts. These contractions may reflect the underlying problems associated with transcription through the repeat. Given the recent interest in the therapeutic use of transcription-driven repeat contractions, our data may have interesting mechanistic, prognostic, and therapeutic implications.
MSH2 is not required for either maintenance of DNA methylation or repeat contraction at the FMR1 locus in fragile X syndrome or the FXN locus in Friedreich's ataxia.
MSH2 既不是脆性 X 综合征中 FMR1 位点 DNA 甲基化或重复序列收缩所必需的,也不是弗里德赖希共济失调中 FXN 位点 DNA 甲基化或重复序列收缩所必需的
阅读:9
作者:Grant-Bier Jessalyn, Ruppert Kathryn, Hayward Bruce, Usdin Karen, Kumari Daman
| 期刊: | Epigenetics & Chromatin | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 28; 18(1):24 |
| doi: | 10.1186/s13072-025-00588-4 | 研究方向: | 表观遗传 |
| 信号通路: | DNA甲基化 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
