BACKGROUND: Recent studies have indicated a close relationship between SENP3 and osteoporosis. However, the detailed molecular mechanism of SENP3 mediating osteoporosis has not been well studied. The goal of this work was to study the specific mechanism by which SENP3 regulates downstream genes through deSUMOylation and thus affects the progression of osteoporosis. METHODS: Osteogenic differentiation was evaluated through osteogenic marker genes, mineralization, and ALP activity, which were detected by qPCR, western blot, and ALP staining assays. Osteoporosis was assessed in OVX mice assessed using qPCR, Micro-CT, and H&E staining assays. The levels of SENP3, DLX2, and SIRT3 were monitored using qPCR and western blot assays. The SUMOylated modification of DLX2 was evaluated using Co-IP and IP assays. The binding of DLX2 to the SIRT3 promoter was confirmed with ChIP, qPCR, dual-luciferase reporter and western blot assays. RESULTS: SENP3, DLX2, and SIRT3 expressions were decreased in tissues of OVX mice. Mechanically, SENP3 inhibited SUMOylated modification of DLX2 and augmented DLX2 stability. Addition of SENP3 accelerated osteogenic differentiation via regulating DLX2. Moreover, DLX2 bound to SIRT3 promoter and accelerated SIRT3 transcription. DLX2 depletion-induced impeditive effects on osteogenic differentiation were reversed by SIRT3 overexpression. Moreover, DLX2 addition counteracted sh-SENP3-induced inhibitory effect on osteogenic differentiation, which was partially reversed by SIRT3 knockdown. Furthermore, SENP3 alleviated osteoporosis in OVX mice by regulating DLX2/SIRT3 axis. CONCLUSION: Addition of SENP3 accelerated osteogenic differentiation and relieved osteoporosis via increasing SIRT3 transcription by the enhance of DLX2 stability via SUMO2/3.
SENP3 alleviates osteoporosis via promoting SIRT3 transcription through the increase of DLX2 stability via SUMO2/3.
SENP3 通过 SUMO2/3 增加 DLX2 的稳定性,从而促进 SIRT3 转录,缓解骨质疏松症
阅读:9
作者:Bu Jie, Xu Xuezheng, Luo Yi, Liu Jianfan, Zhou Feng
| 期刊: | Cell Biology and Toxicology | 影响因子: | 5.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 10; 41(1):99 |
| doi: | 10.1007/s10565-025-10052-4 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
