Wnt/β-catenin pathway induces cardiac dysfunction via AKAP6-mediated RyR2 phosphorylation and sarcoplasmic reticulum calcium leakage.

Wnt/β-catenin 通路通过 AKAP6 介导的 RyR2 磷酸化和肌浆网钙泄漏诱导心脏功能障碍

阅读:13
作者:Li Ang, Shen Yuanyuan, Li Zhenyan, Li Lin
The Wnt signaling pathway plays important roles in cardiomyocyte proliferation and cardiac regeneration after heart injury. Abnormal activation of the Wnt pathway causes a reduction in cardiomyocyte function, leading to hypertrophy, fibrosis, and heart failure. However, the mechanism through which Wnt signaling affects cardiomyocyte function during cardiac diseases is still unclear. In this study, we observed that activation of the Wnt/β-catenin pathway, but not the Wnt/Ca2+ pathway, leads to significant cytosol calcium enrichment. Such an effect can be inhibited by cycloheximide that blocks the downstream gene expression. By analyzing the transcriptome data, we found that activation of the Wnt/β-catenin pathway significantly upregulates the expression level of muscle-selective A kinase anchoring protein (mAKAP, also called AKAP6), a scaffold protein that can improve the interaction between protein kinase A (PKA) and its substrate ryanodine receptor 2 (RyR2) in cardiomyocytes. We further identified that AKAP6 is a target gene of the canonical Wnt pathway and increasing AKAP6 expression can enhance RyR2 phosphorylation by PKA, causing the sarcoplasmic reticulum calcium leakage and finally heart dysfunction. Our finding that the Wnt/β-catenin pathway affects cardiac calcium regulation via AKAP6 and RyR2 provides profound insights into heart diseases and sheds light on potential therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。