New Anti-Fibrotic Strategies for Keloids: Insights From Single-Cell Multi-Omics.

瘢痕疙瘩抗纤维化新策略:来自单细胞多组学的见解

阅读:24
作者:Zhao Songyun, Xie Jiaheng, Zhang Qian, Ni Tianyi, Lin Jinde, Gao Weicheng, Zhao Liping, Yi Min, Tu Liying, Zhang Pengpeng, Wu Dan, Tang Qikai, Ma Chenfeng, He Yucang, Li Liqun, Wu Guoping, Yan Wei
Keloids are complex pathological skin scars characterised by excessive growth of fibrous tissue and abnormal accumulation of extracellular matrix (ECM). Despite various treatment options available, the treatment of keloids remains a major clinical challenge due to high recurrence rates and inconsistent therapeutic outcomes. By collecting three keloid tissues and three normal skin samples and utilising single-cell RNA sequencing (scRNA-seq), we delved into the cellular heterogeneity and molecular mechanisms of keloids. Our study identified multiple fibroblast subpopulations within keloid tissue. Enrichment and cell-cell communication analyses revealed that POSTN-positive mesenchymal fibroblasts (POSTN+ mesenchymal fibs) are more prevalent in keloids and exhibit higher transforming growth factor β (TGF-β) signalling activity, potentially playing a central role in excessive fibrosis. In contrast, IGFBP2-positive fibroblasts (IGFBP2+ fibs) are more abundant in normal skin, insensitive to TGF-β and Periostin signalling, and possess anti-fibrotic potential, possibly related to limited tissue repair and regenerative capacity. Trajectory analysis inferred the differentiation states and patterns of different fibroblast subpopulations. Additionally, we explored the heterogeneity of endothelial cells, finding an endothelial cell subpopulation (EC10) exhibiting mesenchymal activation characteristics, which may work with specific fibroblasts to promote abnormal angiogenesis and endothelial-to-mesenchymal transition processes. Spatial transcriptomics analysis has shown that the proportion of IGFBP2+ fibroblasts relatively increases in acne keloidalis after hormonal treatment, further demonstrating their value as potential therapeutic targets. Ultimately, we separated these two subpopulations using flow cytometry, highlighting their opposing roles in the secretion of the ECM. These findings provide new insights into the pathogenesis of keloids and lay the theoretical foundation for the development of innovative anti-fibrotic treatment strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。