BACKGROUND: Cordycepin (CRD) has been identified to alleviate diabetes-induced injuries and complications including diabetic nephropathy (DN). Here, this work focused on probing the specific effects and potential mechanisms of CRD on DN progression. METHODS: High glucose (HG)-induced mouse podocyte cell line (MPC5) was used for in vitro functional analyses. Cell proliferation and apoptosis were determined using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry, respectively. ELISA analysis detected inflammatory factors. Cell ferroptosis was assessed by measuring the levels of Fe2+, glutathione, reactive oxygen species, and malonaldehyde. RESULTS: CRD treatment suppressed HG-induced apoptosis, inflammation, and ferroptosis in podocytes. CRD treatment elevated SLC7A11 and GPX4 expression in HG-treated podocytes. The overexpression of SLC7A11 or GPX4 suppressed HG-evoked apoptosis, inflammation, and ferroptosis in podocytes. Moreover, the silencing of SLC7A11 or GPX4 abolished the protective effects of CRD on HG-treated podocytes. Moreover, CRD ameliorated renal structure injury and inflammation in STZ-induced diabetic mice by modulating SLC7A11 or GPX4 expression. CONCLUSIONS: Cordycepin suppressed HG-induced apoptosis, inflammation, and ferroptosis in podocytes in vitro, and ameliorated renal injury and inflammation in STZ-induced diabetic mice by activating the SLC7A11/GPX4 pathway.
Cordycepin ameliorates diabetic nephropathy injury by activating the SLC7A11/GPX4 pathway.
虫草素通过激活 SLC7A11/GPX4 通路来改善糖尿病肾病损伤
阅读:6
作者:Wu Bing, Wang Jing, Yan Xiaohui, Jin Gang, Wang Qiong
| 期刊: | Journal of Diabetes Investigation | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Jun;16(6):992-1000 |
| doi: | 10.1111/jdi.14407 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
