RORα-activated mitophagy attenuating hypoxic-ischemic encephalopathy via suppression of microglial cGAS-STING axis.

RORα激活的线粒体自噬通过抑制小胶质细胞cGAS-STING轴来减轻缺氧缺血性脑病

阅读:4
作者:Song Lei, Shen Haiyan, Hong Fei, Zhang Weiyan, Lu Hongyi
INTRODUCTION: Hypoxic-ischemic encephalopathy (HIE) involves neuroinflammation driven by microglial activation, yet regulatory mechanisms remain poorly defined. This study investigates how Retinoic Acid Receptor-Related Orphan Receptor Alpha (RORα) modulates mitophagy to suppress mtDNA-cGAS-STING-NLRP3 signaling in aging microglia, offering therapeutic potential for HIE. METHODS: A multi-omics approach combining single-cell RNA sequencing (scRNA-seq) of an HIE rat model, Weighted Gene Co-Expression Network Analysis (WGCNA), and LASSO regression identified RORα as a pivotal regulator. In vivo and in vitro HIE models with RORα overexpression were assessed via behavioral tests (morris water maze, tail suspension), reactive oxygen species (ROS) quantification, and molecular profiling (RT-qPCR, Western Blot, ELISA). Mitophagy inhibitor 3-MA was used to validate pathway dependence. RESULTS: Multi-omics integration revealed RORα as a hub gene linked to inflammatory and metabolic pathways. RORα activation enhanced mitophagy, reducing mtDNA leakage by 43% and cGAS-STING activity by 68%, which suppressed NLRP3 inflammasome activation (p < 0.01). This correlated with improved cognitive/motor function in HIE rats (p < 0.05) and attenuated ROS/IL-1β levels. Critically, 3-MA reversed RORα's anti-inflammatory effects, confirming mitophagy dependence. CONCLUSION: RORα alleviates HIE by resolving microglial neuroinflammation through mitophagic inhibition of mtDNA-cGAS-STING-NLRP3 signaling. These findings position RORα as a novel therapeutic target for HIE, bridging mitochondrial quality control and neuroimmunology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。