Piperlongumine Inhibits Lung Cancer Growth by Inducing Endoplasmic Reticulum Stress Leading to Suppression of M2 Macrophage Polarization.

胡椒碱通过诱导内质网应激抑制M2巨噬细胞极化,从而抑制肺癌生长

阅读:7
作者:Zhou Yixin, Teng Wenjin, Wu Jianchun, Luo Yingbin, Wang Yuli, Li Yan
Lung cancer is the leading cause of cancer-related deaths globally. Prolonged targeted therapy use can lead to drug resistance and target mismatches, necessitating more effective and safer treatment strategies. Recent research has focused on the tumor microenvironment, which includes immune and stromal cells that play roles in tumor proliferation, metastasis, and neovascularization. Tumor-associated macrophages (TAMs) are key immune cells in the tumor microenvironment, promoting tumor invasion, metastasis, and immune escape. Their infiltration density in lung cancer tissue is a poor prognostic factor. Piperlongumine (PL), extracted from Piper longum, possesses antitumor and anti-inflammatory properties, inducing apoptosis and inhibiting invasion and metastasis in lung cancer cells. This study aims to elucidate the correlation between endoplasmic reticulum stress (ERS) in lung cancer cells and M2-type TAM polarization and the role of PL in regulating lung cancer progression. The network pharmacologic analysis revealed that Piperlongumine inhibits lung cancer progression by inducing endoplasmic reticulum stress. In vivo experiments demonstrated that Piperlongumine significantly reduced tumor volume and decreased the proportion of M2-type macrophages. Within the co-culture system, lung cancer cells were shown to promote macrophage M2-type polarization and enhance cancer cell migration. Piperlongumine effectively inhibited these effects by inducing endoplasmic reticulum stress in cancer cells, thereby reducing M2 polarization and cell migration. The addition of endoplasmic reticulum stress inhibitor 4-PBA counteracted Piperlongumine's effects, further underscoring the crucial role of ERS in the treatment mechanism. Piperlongumine suppresses lung cancer growth by inducing endoplasmic reticulum stress, which inhibits macrophage M2-type polarization and reduces cell migration. These findings support Piperlongumine's potential as a therapeutic agent and offer a foundation for targeting endoplasmic reticulum stress to modulate TAM function in lung cancer treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。