Oxidized protein aggregate lipofuscin impairs cardiomyocyte contractility via late-stage autophagy inhibition.

氧化蛋白聚集体脂褐素通过抑制晚期自噬损害心肌细胞收缩力

阅读:11
作者:Walter Sophia, Häseli Steffen P, Baumgarten Patricia, Deubel Stefanie, Jung Tobias, Höhn Annika, Ott Christiane, Grune Tilman
Aging of the heart is accompanied by impairment of cardiac structure and function. At molecular level, autophagy plays a crucial role in preserving cardiac health. Autophagy maintains cellular homeostasis by facilitating balanced degradation of cytoplasmic components including organelles and misfolded or aggregated proteins. The age-related decline in autophagy favors an accumulation of protein aggregates such as lipofuscin particularly in the heart, which is composed primarily of non-proliferating cells. Therefore, this study investigates whether lipofuscin accumulation contributes to age-related functional decline of primary adult cardiomyocytes isolated from C57BL/6J mice and examines the role of autophagic flux in mediating these effects. Results showed an age-associated reduction in cardiomyocyte contraction amplitude and an increase in autofluorescence, indicating the accumulation of lipofuscin with age. In vitro treatment of adult primary cardiomyocytes with artificial lipofuscin increased autofluorescence and decreased both contraction amplitude and cellular autophagic flux. Induction of autophagy with rapamycin mitigated contractile dysfunction in lipofuscin-treated cardiomyocytes, whereas inhibition of autophagic flux revealed stage-dependent effects. Late-stage autophagy inhibition using chloroquine or concanamycin A reduced cardiomyocyte contraction amplitude, whereas early-stage autophagy inhibition via 3-methyladenine did not affect contraction within 24 h. In conclusion, our results indicate that lipofuscin directly impairs cardiomyocyte function by diminishing late-stage autophagic flux. These findings highlight the essential role of the autophagy-lysosomal system in preserving age-related loss of cardiomyocyte function caused by accumulating protein aggregates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。