Deacetylation mimetic mutation of mitochondrial SOD2 attenuates ANG II-induced hypertension by protecting against oxidative stress and inflammation.

线粒体 SOD2 的去乙酰化模拟突变通过抵抗氧化应激和炎症来减轻 ANG II 诱导的高血压

阅读:5
作者:Dikalova Anna, Ao Mingfang, Tkachuk Liliya, Dikalov Sergey
Almost one-half of adults have hypertension, and blood pressure is poorly controlled in a third of patients despite the use of multiple drugs, likely because of mechanisms that are not affected by current treatments. Hypertension is linked to oxidative stress; however, common antioxidants are ineffective. Hypertension is associated with inactivation of key intrinsic mitochondrial antioxidant, superoxide dismutase 2 (SOD2), due to hyperacetylation, but the role of specific SOD2 lysine residues has not been defined. Hypertension is associated with SOD2 acetylation at lysine 68, and we suggested that deacetylation mimetic mutation of K68 to arginine in SOD2 inhibits vascular oxidative stress and attenuates hypertension. To test this hypothesis, we have developed a new deacetylation mimetic SOD2-K68R mice. We performed in vivo studies in SOD2-K68R mice using angiotensin II (ANG II) model of vascular dysfunction and hypertension. ANG II infusion in wild-type mice induced vascular inflammation and oxidative stress and increased blood pressure to 160 mmHg. SOD2-K68R mutation completely prevented increase in mitochondrial superoxide, abrogated vascular oxidative stress, preserved endothelial nitric oxide production, protected vasorelaxation, and attenuated ANG II-induced hypertension. ANG II and cytokines contribute to vascular oxidative stress and hypertension. Treatment of wild-type aortas with ANG II and cytokines in organoid culture increased mitochondrial superoxide twofold, which was completely prevented in aortas isolated from SOD2-K68R mice. These data support the important role of SOD2-K68 acetylation in vascular oxidative stress and pathogenesis of hypertension. We conclude that strategies to reduce SOD2 acetylation may have therapeutic potential in the treatment of vascular dysfunction and hypertension.NEW & NOTEWORTHY Essential hypertension is associated with hyperacetylation of key mitochondrial antioxidant SOD2; however, the pathophysiological role of SOD2 acetylation has not been defined. Our animal study of angiotensin II hypertension model shows that deacetylation mimetic SOD2-K68R mutation prevents pathogenic increase in vascular mitochondrial superoxide, abrogates vascular oxidative stress, preserves endothelial nitric oxide, protects endothelial-dependent vasorelaxation, and attenuates hypertension. These data support the important role of SOD2-K68 acetylation in vascular oxidative stress and the pathogenesis of hypertension.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。