Histopathological evaluation is a cornerstone of cancer identification but often involves time-consuming labeling processes (â¼days per sample) and experience-dependent interpretation. Herein, we introduce a rapid (â¼40 min per sample) and label-free histopathological method based on metabolic fingerprinting of tissue using nanoparticle-enhanced laser desorption/ionization mass spectrometry. Applied to gastric cancer (GC, n = 284 paired tissue), this approach distinguishes malignant from benign tissues (area under the curve [AUC] of 0.979), identifies tumor subtypes (AUC of 0.963), and assesses prognosis (p < 0.05) without specialized pathologists. External validation on 238 samples from an independent cohort confirmed its robustness. This method advances histopathological analysis, offering potential for scalable clinical use.
Metabolic fingerprinting enables rapid, label-free histopathology in gastric cancer diagnosis and prognostic prediction.
代谢指纹图谱技术能够实现胃癌诊断和预后预测中的快速、无标记组织病理学分析
阅读:5
作者:Teng Fei, Zhang Juxiang, Huang Yida, Xu Wei, Liu Wanshan, Sun Liming, Yan Meng, Wu Jiao, Wang Ruimin, Yang Shouzhi, Huang Lin, Gu Zhengying, Su Haiyang, Xu Xiaoyu, Liang Dingyitai, Ren Ning, Ding Chunmeng, Li Yanyan, Dong Qiongzhu, Guo Lingchuan, Liu Shaoqun, Wang Xuefei, Qian Kun
| 期刊: | Cell Reports Medicine | 影响因子: | 10.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 15; 6(7):102238 |
| doi: | 10.1016/j.xcrm.2025.102238 | 研究方向: | 代谢 |
| 疾病类型: | 胃癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
