In Situ Bioprinting Enhances Bone Regeneration in a Live Animal Model with Craniofacial Defect.

原位生物打印技术可增强颅面缺损活体动物模型的骨骼再生

阅读:7
作者:Hindi Osama Ali, Pinarbasi Begum, Bakici Merve, Demirtas Oya Burcin, Gokyer Seyda, Buyuksungur Arda, Orhan Kaan, Oto Cagdas, Yilgor Pinar
In situ bioprinting represents an innovative approach in tissue engineering and regenerative medicine, enabling direct deposition of bioinks within the body to create or repair tissues at the target site. This technique leverages advanced bioprinting technologies to deliver cells, biomaterials, and bioactive molecules in a precise, controlled manner, offering the potential for on-demand tissue repair and minimizing the need for extensive surgical intervention. In this research, we apply for the first time in the literature a standard 3D bioprinter to perform in situ bioprinting over the bone defects of live animals under anesthesia and discuss the bone regeneration potential. For this, critical-sized bone defects were created on the parietal bones of the rabbits, followed by the application of autologous adipose-derived stem cell-laden bioink using a 3D bioprinter. Postoperative evaluations included micro-CT and histopathological analysis to assess bone healing and bone-material integration. The results demonstrated successful bone regeneration with the in situ bioprinting approach, as compared to the sham and the use of bioink-only. In conclusion, this study contributes to the growing body of evidence supporting in situ 3D bioprinting as a viable and promising technique for craniofacial bone regeneration, with potential implications for broader clinical relevance and paves the way for future clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。