Bioinspired soft robotic systems that mimic living organisms using engineered muscle tissue and biomaterials are revolutionizing the current biorobotics paradigm, especially in biomedical research. Recreating artificial life-like actuation dynamics is crucial for a soft-robotic system. However, the precise control and tuning of actuation behavior still represents one of the main challenges of modern soft robotic systems. This method describes a low-cost, highly scalable, and easy-to-use procedure to fabricate an electrically controllable soft robot with life-like movements that is activated and controlled by the contraction of cardiac muscle tissue on a micropatterned sting ray-like hydrogel scaffold. The use of soft photolithography methods makes it possible to successfully integrate multiple components in the soft robotic system, including micropatterned hydrogel-based scaffolds with carbon nanotubes (CNTs) embedded gelatin methacryloyl (CNT-GelMA), poly(ethylene glycol) diacrylate (PEGDA), flexible gold (Au) microelectrodes, and cardiac muscle tissue. In particular, the hydrogels alignment and micropattern are designed to mimic the muscle and cartilage structure of the sting ray. The electrically conductive CNT-GelMA hydrogel acts as a cell scaffold that improves the maturation and contraction behavior of cardiomyocytes, while the mechanically robust PEGDA hydrogel provides structural cartilage-like support to the whole soft robot. To overcome the hard and brittle nature of metal-based microelectrodes, we designed a serpentine pattern that has high flexibility and can avoid hampering the beating dynamics of cardiomyocytes. The incorporated flexible Au microelectrodes provide electrical stimulation across the soft robot, making it easier to control the contraction behavior of cardiac tissue.
Bioinspired Soft Robot with Incorporated Microelectrodes.
仿生软体机器人,内置微电极
阅读:8
作者:Wang Ting, Migliori Bianca, Miccoli Beatrice, Shin Su Ryon
| 期刊: | Jove-Journal of Visualized Experiments | 影响因子: | 1.000 |
| 时间: | 2020 | 起止号: | 2020 Feb 28; (156):10 |
| doi: | 10.3791/60717 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
