Loss of Ubiquitin-Specific Protease 11 Mitigates Pulmonary Fibrosis in Human Pluripotent Stem Cell-Derived Alveolar Organoids.

泛素特异性蛋白酶 11 的缺失可减轻人类多能干细胞衍生肺泡类器官的肺纤维化

阅读:6
作者:Rajkumar Sripriya, Jung Ji-Hye, Kim Ji-Young, Karapurkar Janardhan Keshav, Birappa Girish, Gowda D A Ayush, Ajaykumar C Bindu, Perumalsamy Haribalan, Suresh Bharathi, Kim Kye-Seong, Hong Seok-Ho, Ramakrishna Suresh
The etiology of chronic and lethal interstitial lung disease, termed idiopathic pulmonary fibrosis (IPF), remains unidentified. IPF induces pathological lung scarring that results in rigidity and impairs gas exchange, eventually resulting in premature mortality. Recent findings indicate that deubiquitinating enzymes play a key role in stabilizing fibrotic proteins and contribute to pulmonary fibrosis. The ubiquitin-specific protease 11 (USP11) promotes pro-fibrotic proteins, and its expression elevated in tissue samples from patients with IPF. Thus, this study aimed to examine the effects of loss of function of USP11 gene on the progression of pulmonary fibrosis by utilizing 3D cell culture alveolar organoids (AOs) that replicate the structure and functions of the proximal and distal airways and alveoli. Here, we applied the CRISPR/Cas9 system to knock out the USP11 gene in human induced pluripotent stem cells (hiPSCs) and then differentiated these hiPSCs into AOs. Loss of USP11 gene resulted in abnormalities in type 2 alveolar epithelial cells in the hiPSC-USP11KO-AOs. Moreover, knock out of the USP11 mitigates pulmonary fibrosis caused by TGF-β in hiPSC-USP11KO-AOs by reducing collagen formation and fibrotic markers, suggesting it has the therapeutic potential to treat IPF patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。