Plasmalogens are an abundant class of glycero-phospholipids with a characteristic 1-O-alk-1'-enyl double bond. While their synthesis has been extensively investigated, their degradation remains understudied. Plasmalogen deficiencies are associated with severe disorders in humans and interfering with their degradation would be a treatment option, but it remains out of reach due to limited knowledge. The plasmalogen double bond is degraded either directly by a plasmalogenase or by conversion to the 2' lyso forms by phospholipase and subsequent cleavage by lysoplasmalogenase (E.C. 3.3.2.2). Two lysoplasmalogenases are known so far, TMEM86A and TMEM86B. While TMEM86B has been expressed in bacteria, purified, and shown to encode lysoplasmalogenase activity by a coupled optical assay, the closely related protein TMEM86A has not yet been purified, but its activity was shown indirectly by a lipidomics approach. Here, we present a novel assay for lysoplasmalogenase activity based on incubation with lysoplasmenylethanolamine or lysoplasmenylcholine, derivatization of the aldehyde product with dansylhydrazine, and hydrazone quantification by reversed-phase HPLC with fluorescence detection. The method was sensitive enough to robustly detect lysoplasmalogenase activity in human embryonic kidney cells following transient expression of TMEM86A or TMEM86B and also suitable for the determination of lysoplasmalogenase activity in mouse tissues where highest activities were found in liver and duodenum. We introduced point mutations at positions proposed to be catalytically relevant and provided experimental evidence that all but one affected lysoplasmalogenase activity. Our novel assay allows direct and fast measurement of lysoplasmalogenase activity, thereby providing a tool to advance research in the field of plasmalogen degradation.
Functional characterization of TMEM86A and TMEM86B mutants by a novel lysoplasmalogenase assay.
通过一种新型溶血质原酶测定法对TMEM86A和TMEM86B突变体进行功能表征
阅读:4
作者:Kummer Denise, Dorigatti Ilaria, Dunzendorfer-Matt Theresia, Golderer Georg, Werner Ernst R, Watschinger Katrin
| 期刊: | Journal of Lipid Research | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;66(4):100766 |
| doi: | 10.1016/j.jlr.2025.100766 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
