Erythropoietin delivery through kidney organoids engineered with an episomal DNA vector.

利用游离型DNA载体构建的肾脏类器官递送促红细胞生成素

阅读:4
作者:Du Z, Bas-Cristóbal Menéndez A, Urban M, Hartley A, Ratsma D, Koedam M, van den Bosch T P P, Clahsen-van Groningen M, Gribnau J, Mulder J, Reinders M E J, Baan C C, van der Eerden B, Harbottle R P, Hoogduijn Martin J
BACKGROUND: The kidney's endocrine function is essential for maintaining body homeostasis. Erythropoietin (EPO) is one of the key endocrine factors produced by the kidney, and kidney disease patients frequently experience anemia due to impaired EPO production. In the present study we explored the potential of human induced pluripotent stem cell (iPSC)-derived kidney organoids to restore EPO production. METHODS: EPO secretion by kidney organoids was examined under 1% and 20% oxygen levels. To increase the EPO secreting capacity of kidney organoids, iPSC were genetically engineered with a non-integrating scaffold/matrix attachment region (S/MAR) DNA vector containing the EPO gene and generated EPO-overexpressing (EPO+) kidney organoids. To assess the physiological effects of EPO + organoids, 2-8 organoids were implanted subcutaneously in immunodeficient mice. RESULTS: Kidney organoids produced low amounts of EPO under 1% oxygen. EPO S/MAR DNA vectors persisted and continued to robustly express EPO during iPSC expansion and kidney organoid differentiation without interfering with cellular proliferation. EPO + iPSC demonstrated efficient differentiation into kidney organoids. One-month post-implantation, EPO + organoids displayed continuously elevated EPO mRNA levels and significantly increased endothelial cell numbers compared to control organoids. Hematocrit levels were notably elevated in mice implanted with EPO + organoids in an organoid number-dependent manner. EPO + organoids furthermore influenced bone homeostasis in their hosts, evidenced by a change in trabecular bone composition. CONCLUSION: Kidney organoids modified by EPO S/MAR DNA vector allow stable long-term delivery of EPO. The observed physiological effects following the implantation of EPO + organoids underscore the potential of gene-edited kidney organoids for endocrine restoration therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。