Enhancing Form Stability: Shrink-Resistant Hydrogels Made of Interpenetrating Networks of Recombinant Spider Silk and Collagen-I.

增强形状稳定性:由重组蜘蛛丝和I型胶原蛋白互穿网络制成的抗收缩水凝胶

阅读:5
作者:Ng Xuen J, Esser Tilman U, Trossmann Vanessa T, Rudisch Christoph, Fiedler Maren, Roshanbinfar Kaveh, Lamberger Zan, Stahlhut Philipp, Lang Gregor, Scheibel Thomas, Engel Felix B
Tissue engineering enables the production of tissues and organ-like structures as models for drug testing and mechanistical studies or functional replacements for injured tissues. Available cytocompatible materials are limited in number, suffer from insufficient mechanical properties, and cells interacting with them often cause construct shrinkage. As shape is important for function, identifying cytocompatible, shrink-resistant materials are a major aim. Here, it is shown that hydrogels made of interpenetrating networks of collagen-I and recombinant spider silk protein eADF4(C16)-RGD nanofibrils exhibit synergistic and tunable mechanical properties. Composite hydrogels allow cell adhesion and spreading and are resistant to shrinkage mediated by fibroblasts, C2C12 myoblasts, and human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. Myoblasts differentiate and fuse into myotubes, and hiPSC-cardiomyocytes can be cultured long-term, show spontaneous contractions, and remain drug responsive. Collectively, a novel composite material is developed to overcome the challenge of post-fabrication matrix shrinkage conferring high shape fidelity suitable for tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。