BACKGROUND: Epilepsy is a common disease of the nervous system. Recent advances in epigenetics have revealed DNA methylation as a key mechanism in epilepsy pathogenesis, particularly through dysregulation of GABAergic signaling. Baicalein has been shown to have anticonvulsant and neuroprotective effects. However, its epigenetic regulatory effects on GABA receptor function remain unexplored. METHODS: The status epilepticus (SE) model was induced by lithium chloride-pilocarpine (LiCl-PILO) in Sprague-Dawley (SD) rats. The rats were divided into control group, epileptic SE group and baicalein intervention group. Morris water maze (MWM) test, Nissl staining, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) were used to detect cognitive functions and neuronal damage. Online sites, chromatin immunoprecipitation (ChIP) and western blotting were used to identify DNA methyltransferase 1 (DNMT1)-mediated methylation of gamma-aminobutyric acid type A receptor subunit delta (GABRD) promoter region. RESULTS: Baicalein treatment significantly prolonged the latency of SE onset and seizure onset, and improved the development of epilepsy. Meanwhile, baicalein improved the cognitive impairment in rats induced by LiCl-PILO. After treatment with baicalein, a sustained elevation in the number of neurons and NeuN levels was observed, along with a decrease in the contents of tumor necrosis factor -alpha (TNF-α), interleukin-1β (IL-1β), and ionized calcium-binding adapter molecule 1 (Iba-1) in the hippocampus. Mechanistically, baicalein interacted with DNMT1 to suppress GABRD promoter region methylation, thus increasing GABRD protein level in the hippocampus of rats induced by LiCl-PILO. CONCLUSION: This study identifies DNMT1/GABRD axis as a novel epigenetic target for epilepsy intervention. Baicalein's ability to enhance tonic inhibition through demethylation of GABRD provides a groundbreaking strategy for drug-resistant epilepsy.
Baicalein Alleviates Lithium-Pilocarpine-Induced Status Epilepticus by Regulating DNMT1/GABRD Pathway in Rats.
黄芩苷通过调节DNMT1/GABRD通路缓解大鼠锂-毛果芸香碱诱发的癫痫持续状态
阅读:16
作者:Wu Zhenggang, Liu Jing, Yin Deju, Huang Jing, Huang Yujing, Wang Pengfei
| 期刊: | Organogenesis | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Dec;21(1):2519607 |
| doi: | 10.1080/15476278.2025.2519607 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
