Left ventricular myocardial molecular profile of human diabetic ischaemic cardiomyopathy.

人类糖尿病缺血性心肌病左心室心肌分子特征

阅读:4
作者:Hunter Benjamin, Zhang Yunwei, Harney Dylan, McEwen Holly, Koay Yen Chin, Pan Michael, Malecki Cassandra, Khor Jasmine, Hume Robert D, Guglielmi Giovanni, Walker Alicia, Dutta Shashwati, Rajagopal Vijay, Don Anthony, Larance Mark, O'Sullivan John F, Yang Jean Y H, Lal Sean
Ischaemic cardiomyopathy is the most common cause of heart failure and often coexists with diabetes mellitus, which worsens patient symptom burden and outcomes. Yet, their combined effects are seldom investigated and are poorly understood. To uncover the influencing molecular signature defining ischaemic cardiomyopathy with diabetes, we performed multi-omic analyses of ischaemic and non-ischaemic cardiomyopathy with and without diabetes against healthy age-matched donors. Tissue was sourced from pre-mortem human left ventricular myocardium. Fatty acid transport and oxidation proteins were most downregulated in ischaemic cardiomyopathy with diabetes relative to donors. However, the downregulation of acylcarnitines, perilipin, and ketone body, amino acid, and glucose metabolising proteins indicated lipid metabolism may not be entirely impaired. Oxidative phosphorylation, oxidative stress, myofibrosis, and cardiomyocyte cytoarchitecture also appeared exacerbated principally in ischaemic cardiomyopathy with diabetes. These findings indicate that diabetes confounds the pathological phenotype in heart failure, and the need for a paradigm shift regarding lipid metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。