Ovarian cancer (OC) stands as a formidable adversary among women, remaining a leading cause of cancer-related mortality owing to its aggressive and invasive nature. Investigating prognostic markers intricately linked to OC's molecular pathogenesis represents a critical avenue for enhancing patient outcomes and survival prospects. In this comprehensive study, we embarked on a bioinformatics journey, leveraging the vast repository of single nucleotide polymorphism (SNP) data from OC patients available within the TCGA database. Our overarching goal was to unearth the genetic underpinnings of OC, shedding light on potential prognostic markers that could significantly impact clinical decision-making and patient care. Our meticulous analysis led to the discovery of five mutated genes-APOB, BRCA1, COL6A3, LRP1, and LRP1B-engaged in the intricate world of lipid metabolism. These genes, previously unexplored in the context of OC, emerged as prominent figures in our investigation, showcasing their potential roles in OC progression. The intricate interplay between lipid metabolism and cancer development has garnered considerable attention in recent years, and our findings underscore the relevance of these genes in the context of OC. To fortify our discoveries, we delved into the realm of survival analysis, a pivotal component of our investigation. The results yielded compelling evidence of significant correlations between patient survival and the expression levels of the aforementioned genes. This critical insight underscores the potential utility of these genes as prognostic markers, illuminating a path toward more personalized and effective approaches to patient care. Our study represents a multifaceted approach to unraveling the complex molecular pathogenesis of OC. By harnessing the power of high-throughput data mining, we uncovered genetic insights that may reshape our understanding of this formidable disease. We complemented these findings with advanced techniques such as RT-qPCR and Western blot, further dissecting the intricacies of OC's molecular landscape. This holistic approach not only deepens our understanding but also provides essential bioinformatics information that holds promise in assessing patient prognosis. In summary, our study represents a significant stride in the quest to decode the molecular intricacies of ovarian cancer. Our findings spotlight the potential prognostic significance of APOB, BRCA1, COL6A3, LRP1, and LRP1B, inviting further exploration into their roles in OC progression. Ultimately, our research carries the potential to shape the future of OC management, offering a glimpse into a more personalized and effective approach to patient care.
Single nucleotide polymorphisms in ovarian cancer impacting lipid metabolism and prognosis: an integrated TCGA database analysis.
卵巢癌中影响脂质代谢和预后的单核苷酸多态性:TCGA 数据库的综合分析
阅读:11
作者:Wang Haoyu, Tu Tian, Yin Lijun, Liu Zhenfeng, Lu Hui
| 期刊: | BMC Cancer | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Mar 13; 25(1):462 |
| doi: | 10.1186/s12885-025-13841-6 | 研究方向: | 代谢 |
| 疾病类型: | 卵巢癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
