Basal ATP release signals through the P2Y(2) receptor to maintain the differentiated phenotype of vascular smooth muscle cells.

基础 ATP 释放信号通过 P2Y(2) 受体维持血管平滑肌细胞的分化表型

阅读:9
作者:Chen Xingjuan, Obukhov Alexander G, Weisman Gary A, Seye Cheikh I
BACKGROUND AND AIMS: Vascular smooth muscle cell (VSMC) dedifferentiation contributes substantively to vascular disease. VSMCs spontaneously release low levels of ATP that modulate vessel contractility, but it is unclear if autocrine ATP signaling in VSMCs is critical to the maintenance of the VSMC contractile phenotype. METHODS: We used pharmacological inhibitors to block ATP release in human aortic smooth muscle cells (HASMCs) for studying changes in VSMC differentiation marker gene expression. We employed RNA interference and generated mice with SMC-specific inducible deletion of the P2Y(2) receptor (P2Y(2)R) gene to evaluate resulting phenotypic alterations. RESULTS: HASMCs constitutively release low levels of ATP that when blocked results in a significant decrease in VSMC differentiation marker gene expression, including smooth muscle actin (SMA), smooth muscle myosin heavy chain (SMMHC), SM-22α and calponin. Basal release of ATP represses transcriptional activation of the Krüppel-Like Factor 4 (KFL4) thereby preventing platelet-derived growth factor-BB (PDGF-BB) from inhibiting expression of SMC contractile phenotype markers. SMC-restricted conditional deletion of P2Y(2)R evoked dedifferentiation characterized by decreases in aortic contractility and contractile phenotype markers expression. This loss was accompanied by a transition to the synthetic phenotype with the acquisition of extracellular matrix (ECM) proteins characteristic of dedifferentiation, such as osteopontin and vimentin. CONCLUSIONS: Our data establish the first direct evidence that an autocrine ATP release mechanism maintains SMC cytoskeletal protein expression by inhibiting VSMCs from transitioning to a synthetic phenotype, and further demonstrate that activation of the P2Y(2)R by basally released ATP is required for maintenance of the differentiated VSMC phenotype.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。