Oxidised low-density lipoprotein cholesterol (ox-LDL) is critical in the initiation and progression of atherosclerosis. While excessive atherogenic lipids in the arterial intima can trigger endothelial dysfunction in advanced lesions, the response of endothelial cells to ox-LDL in the early stages of atherogenesis remains unclear. Here, we conducted a comprehensive, genome-wide multi-omics characterisation of the cellular response to ox-LDL in primary human aortic endothelial cells (HAECs). Our results reveal that the exposure of HAECs to ox-LDL leads to pathogenic changes in metabolism, transcriptome and epigenome, but in the absence of a typical inflammatory endothelial phenotype. An integrative analysis implicates the role of AP-1, NFE-2 and CEBP transcription factors in regulating ox-LDL-induced transcription. We further demonstrate that ox-LDL activates endothelial cell migration through the epigenomic rewiring of transcription factor binding. Notably, these ox-LDL-induced dynamic binding sites are enriched for the genetic risk of coronary artery disease, enabling the discovery of the gene-environment interaction of rs62172376 and ox-LDL at the CALCRL/TFPI locus. Collectively, our findings provide an unbiased understanding of the transcriptional regulation in endothelial cells in response to ox-LDL, together with its interaction with the genetic element of coronary artery disease.
Ox-LDL induces a non-inflammatory response enriched for coronary artery disease risk in human endothelial cells.
氧化低密度脂蛋白 (Ox-LDL) 可诱导人类内皮细胞产生非炎症反应,从而增加冠状动脉疾病的风险
阅读:4
作者:Jiang Jiahao, Hiron Thomas K, Chalisey Anil, Malhotra Yashaswat, Agbaedeng Thomas, O'Callaghan Chris A
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 15(1):21877 |
| doi: | 10.1038/s41598-025-07763-3 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
