Age-dependent cortical overconnectivity in Shank3 mice is reversed by anesthesia.

Shank3 小鼠的年龄依赖性皮层过度连接可通过麻醉逆转

阅读:4
作者:Montagni Elena, Ambrosone Manuel, Martello Alessandra, Curti Lorenzo, Polverini Federica, Baroncelli Laura, Mannaioni Guido, Pavone Francesco Saverio, Masi Alessio, Allegra Mascaro Anna Letizia
Growing evidence points to brain network dysfunction as a central neurobiological basis for autism spectrum disorders (ASDs). As a result, studies on Functional Connectivity (FC) have become pivotal for understanding the large-scale network alterations associated with ASD. Despite ASD being a neurodevelopmental disorder, and FC being significantly influenced by the brain state, existing FC studies in mouse models predominantly focus on adult subjects under anesthesia. The differential impact of anesthesia and age on cortical functional networks in ASD subjects remains unexplored. To fill this gap, we conducted a longitudinal evaluation of FC across three brain states and three ages in the Shank3b mouse model of autism. We utilized wide-field calcium imaging to monitor cortical activity in Shank3b(+/-) and Shank3b(+/+) mice from late development (P45) through adulthood (P90), and isoflurane anesthesia to manipulate the brain state. Our findings reveal that network hyperconnectivity, emerging from the barrel-field cortices during the juvenile stage, progressively expands to encompass the entire dorsal cortex in adult Shank3b(+/-) mice. Notably, the severity of FC imbalance is highly dependent on the brain state: global network alterations are more pronounced in the awake state and are strongly reduced under anesthesia. These results underscore the crucial role of anesthesia in detecting autism-related FC alterations and identify a significant network of early cortical dysfunction associated with autism. This network represents a potential target for non-invasive translational treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。