Discrete photoentrainment of mammalian central clock is regulated by bi-stable dynamic network in the suprachiasmatic nucleus.

哺乳动物中枢生物钟的离散光同步是由视交叉上核中的双稳态动态网络调节的

阅读:4
作者:Yeh Po-Ting, Jhan Kai-Chun, Chua Ern-Pei, Chen Wun-Ci, Chu Shi-Wei, Wu Shun-Chi, Chen Shih-Kuo
The biological clock synchronizes with the environmental light-dark cycle through circadian photoentrainment. While intracellular pathways regulating clock gene expression after light exposure in the suprachiasmatic nucleus are well studied in mammals, the neuronal circuits driving phase shifts remain unclear. Here, using a mouse model, we show that chemogenetic activation of early-night light-responsive neurons induces phase delays at any circadian time, potentially breaking the photoentrainment dead zone. In contrast, activating late-night light-responsive neurons mimics light-induced phase shifts. Using in vivo two-photon microscopy, we found that most neurons in the suprachiasmatic nucleus exhibit stochastic light responses, while a small subset is consistently activated in the early subjective night and another is inhibited in the late subjective night. Our findings suggest a dynamic bi-stable network model for circadian photoentrainment, where phase shifts arise from a functional circuit integrating signals to groups of outcome neurons, rather than a labeled-line principle seen in sensory systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。