Endoplasmic reticulum (ER)-associated protein degradation (ERAD) plays a vital role in maintaining ER homeostasis by degrading misfolded ER proteins. The SEL1L-HRD1 complex, the most evolutionarily conserved branch of ERAD, has been implicated in various physiological processes in both mice and humans, including cellular stress responses, immune function, and development. However, its role in Sertoli cells, which are critical for supporting spermatogenesis, remains unexplored. Here, we show that Sertoli cell SEL1L is not essential for their function or spermatogenesis. SEL1L and HRD1 proteins are expressed in Sertoli cells, and the deletion of SEL1L in Sertoli cells reduces HRD1 protein levels and impairs ERAD function. This leads to elevated ER stress responses and increased expression of ER chaperones, suggesting a potential compensatory adaptation to maintain ER homeostasis. Despite these changes, Sertoli cell-specific Sel1L deletion does not disrupt testicular histology, sperm count, or male fertility. These findings reveal the adaptation of Sertoli cells to SEL1L and ERAD dysfunction and highlight their ability to sustain spermatogenesis under ER stress.
SEL1L regulates ER homeostasis in Sertoli cells but is dispensable for their function.
SEL1L 调节 Sertoli 细胞的内质网稳态,但对于其功能并非必需
阅读:11
作者:Tushi Nusrat Jahan, Lu You, Zhang Zhibing, Sun Shengyi
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 1; 36(8):ar92 |
| doi: | 10.1091/mbc.E25-03-0101 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
