Endoplasmic reticulum (ER)-associated protein degradation (ERAD) plays a vital role in maintaining ER homeostasis by degrading misfolded ER proteins. The SEL1L-HRD1 complex, the most evolutionarily conserved branch of ERAD, has been implicated in various physiological processes in both mice and humans, including cellular stress responses, immune function, and development. However, its role in Sertoli cells, which are critical for supporting spermatogenesis, remains unexplored. Here, we show that Sertoli cell SEL1L is not essential for their function or spermatogenesis. SEL1L and HRD1 proteins are expressed in Sertoli cells, and the deletion of SEL1L in Sertoli cells reduces HRD1 protein levels and impairs ERAD function. This leads to elevated ER stress responses and increased expression of ER chaperones, suggesting a potential compensatory adaptation to maintain ER homeostasis. Despite these changes, Sertoli cell-specific Sel1L deletion does not disrupt testicular histology, sperm count, or male fertility. These findings reveal the adaptation of Sertoli cells to SEL1L and ERAD dysfunction and highlight their ability to sustain spermatogenesis under ER stress.
SEL1L regulates ER homeostasis in Sertoli cells but is dispensable for their function.
SEL1L 调节 Sertoli 细胞的内质网稳态,但对于其功能并非必需
阅读:4
作者:Tushi Nusrat Jahan, Lu You, Zhang Zhibing, Sun Shengyi
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 1; 36(8):ar92 |
| doi: | 10.1091/mbc.E25-03-0101 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
