The preference for a particular thermal range is a key determinant of the distribution of animal species. However, we know little on how temperature preference behaviour evolves during the colonization of new environments. Here we show that at least two distinct neurobiological mechanisms drive the evolution of temperature preference in flies of the genus Drosophila. Fly species from mild climates (D.âmelanogaster and D.âpersimilis) avoid both innocuous and noxious heat, and we show that the thermal activation threshold of the molecular heat receptor Gr28b.d precisely matches species-specific thresholds of behavioural heat avoidance. We find that desert-dwelling D.âmojavensis are instead actively attracted to innocuous heat. Notably, heat attraction is also mediated by Gr28b.d (and by the antennal neurons that express it) and matches its threshold of heat activation. Rather, the switch in valence from heat aversion to attraction correlates with specific changes in thermosensory input to the lateral horn, the main target of central thermosensory pathways and a region of the fly brain implicated in the processing of innate valence(1-5). Together, our results demonstrate that, in Drosophila, the adaptation to different thermal niches involves changes in thermal preference behaviour, and that this can be accomplished using distinct neurobiological solutions, ranging from shifts in the activation threshold of peripheral thermosensory receptor proteins to a substantial change in the way temperature valence is processed in the brain.
Evolution of temperature preference in flies of the genus Drosophila.
果蝇属昆虫温度偏好的演化
阅读:5
作者:Capek Matthew, Arenas Oscar M, Alpert Michael H, Zaharieva Emanuela E, Méndez-González Iván D, Simões José Miguel, Gil Hamin, Acosta Aldair, Su Yuqing, Para Alessia, Gallio Marco
| 期刊: | Nature | 影响因子: | 48.500 |
| 时间: | 2025 | 起止号: | 2025 May;641(8062):447-455 |
| doi: | 10.1038/s41586-025-08682-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
