BACKGROUND: We previously reported that a single injection of (R,S)-ketamine or its metabolite (2S,6S)-hydroxynorketamine (HNK) prior to stress attenuated learned fear. However, whether these drugs attenuate learned fear through divergent or convergent effects on neural activity remains to be determined. METHODS: 129S6/SvEv male mice were injected with saline, (R,S)-ketamine, or (2S,6S)-HNK 1 week before a 3-shock contextual fear conditioning paradigm. Five days later, mice were re-exposed to the aversive context and euthanized 1 hour later to quantify active cells. Brains were processed for c-fos immunoreactivity, and neural networks were built with a novel, wide-scale imaging pipeline. RESULTS: We found that (R,S)-ketamine and (2S,6S)-HNK attenuated learned fear. Fear-related neural activity was altered in dorsal CA3 following (2S,6S)-HNK; ventral CA3 and CA1, infralimbic and prelimbic regions, insular cortex, retrosplenial cortex, piriform cortex, nucleus reuniens, and periaqueductal gray following both (R,S)-ketamine and (2S,6S)-HNK; and in the paraventricular nucleus of the thalamus (PVT) following (R,S)-ketamine. Dorsal CA3 and ventral hippocampus activation correlated with freezing in the (R,S)-ketamine group, and retrosplenial cortex activation correlated with freezing in both (R,S)-ketamine and (2S,6S)-HNK groups. (R,S)-ketamine increased connectivity between cortical and subcortical regions while (2S,6S)-HNK increased connectivity within these regions. CONCLUSIONS: This work identifies novel nodes in fear networks that involve the nucleus reuniens, piriform cortex, insular cortex, periaqueductal gray, and retrosplenial cortex that can be targeted with neuromodulatory strategies or pharmaceutical compounds to treat fear-induced disorders. This approach could be used to optimize target engagement and dosing strategies of existing medications.
Prophylactic (R,S)-Ketamine and (2S,6S)-Hydroxynorketamine Decrease Fear Expression by Differentially Modulating Fear Neural Ensembles.
预防性使用 (R,S)-氯胺酮和 (2S,6S)-羟基去甲氯胺酮通过差异性调节恐惧神经元群来降低恐惧表达
阅读:7
作者:Mastrodonato Alessia, Jin Michelle, Kee Noelle, Lanio Marcos, Tapia Juliana, Quintana Liliette, Muñoz Zamora Andrea, Deng Shi-Xian, Xu Xiaoming, Landry Donald W, Denny Christine A
| 期刊: | Biological Psychiatry | 影响因子: | 9.000 |
| 时间: | 2025 | 起止号: | 2025 May 1; 97(9):887-899 |
| doi: | 10.1016/j.biopsych.2024.09.024 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
