Antibiotics-induced dysbiosis impacts dendritic morphology of adult mouse cortical interneurons.

抗生素引起的菌群失调会影响成年小鼠皮层中间神经元的树突形态

阅读:7
作者:Nakhal Mohammed M, Mydeen Ayishal B, Yassin Lydia K, Almazrouei Reem, Alkamali Rasha, Alsulaimi Mahra, Elsaleh Rawan I, BaniYas Shamsa, Al Houqani Shaikha, Al-Marzooq Farah, Hassane Maya, Voitetskii Roman, Statsenko Yauhen, Allam Mushal, Akour Amal, Hamad Mohammad I K
INTRODUCTION: A growing body of evidence suggests that the gut microbiome may contribute to changes in brain morphology. The microbiota-gut-brain axis (MGBA) has been shown to influence neurogenesis, axon myelination, and synapse structure. However, it remains unclear whether the MGBA can influence the morphology and density of inhibitory GABAergic interneurons. The aim of this study was to determine whether antibiotic-induced dysbiosis (AID) is associated with alterations in dendritic morphology of GABAergic inhibitory interneurons in the medial entorhinal cortex (mEC), somatosensory cortex (SSC), motor cortex (MC), and hippocampus (Hp). METHODS: A cohort of six-month-old GAD-67-EGFP transgenic mice was treated with an antibiotic cocktail for two weeks, resulting in gut dysbiosis as validated by collecting stool samples at baseline and after treatment, then using next-generation sequencing of 16S ribosomal RNA. RESULTS: The results demonstrate that the proposed model effectively exhibited the defining features of gut dysbiosis, including a significant reduction in microbiome diversity, expansion of pathobionts, and loss of beneficial microbes. The AID group showed alterations in density and morphology of GABAergic interneurons in different brain areas. The mean dendritic length and mean dendritic segments of the SSC and Hp were found to be significantly decreased, while no such decrease was observed in the mEC or MC. Furthermore, the density of interneurons was decreased in the mEC, Hp, and SSC areas, while no change was observed in the MC area. DISCUSSION: The interneuron dysfunction plays a role in the pathogenesis of neurological disease. The findings of this study suggest that AID potentially influences the density and morphology of the interneurons, which may contribute to the development of neurological disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。