Aberrant macrophage activation and maladaptive lung repair promote tuberculosis progression uniquely in the lung.

异常的巨噬细胞活化和肺部修复不良会促进结核病在肺部的进展

阅读:17
作者:Yabaji Shivraj M, Lata Suruchi, Tseng Anna E, Araveti Prasanna Babu, Lo Ming, Gavrish Igor, O'Connell Aoife K, Gertje Hans P, Belkina Anna C, Thurman Colleen E, Kiyokawa Hirofumi, Kotton Darrell, Tan Shumin, Endsley Janice J, Bishai William R, Crossland Nicholas, Kobzik Lester, Kramnik Igor
Pulmonary tuberculosis (PTB) represents 85% of the disease burden caused by Mycobacterium tuberculosis (Mtb) and promotes aerosol transmission infecting about a quarter of people globally. Most Mtb infections are effectively limited within primary granulomatous lesions. Containment failures lead to hematogenous spread and the formation of post-primary destructive PTB lesions. Factors that favor Mtb survival and replication in the lungs after hematogenous spread despite systemic immunity represent appealing targets for host-directed TB therapies, but are currently unknown. We developed a novel mouse model that mimics progression of chronic post-primary PTB in humans: wherein PTB lesions form after hematogenous spread from a remote primary lesion in immunocompetent but TB-susceptible B6.Sst1S mice. The B6.Sst1S mice developed PTB lesions featuring granulomatous pneumonia, bronchogenic expansion and broncho-occlusion closely resembling post-primary PTB in humans. Using spatial transcriptomic and fluorescent multiplexed immunochemistry, we demonstrated the expansion of myeloid cell populations with the appearance of alternatively activated macrophages, dissolution of initial lymphoid follicles, and accumulation of de-differentiated lung epithelial cells in the advanced PTB lesions. To determine whether lung parenchymal cells or lung oxygenation were necessary for the pulmonary TB progression, we implanted lung and spleen fragments subcutaneously to serve as potential targets for hematogenous spread. The lung (but not spleen) implants displayed characteristic organized granulomas with necrosis and Mtb replication demonstrating that deleterious interactions of aberrantly activated macrophages with the inflammation-injured lung resident cells, and possibly hypoxia, not oxygenation, are critical determinants of PTB progression in immunocompetent hosts. Necrotic TB lesions also developed in subcutaneous implants of human lung tissue in mice with human immune system after respiratory infection. These animal models may serve to further dissect the lung-specific mechanisms of host susceptibility to virulent Mtb and for testing therapeutic interventions targeting these mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。