Rapid generation of a sdhb loss-of-function zebrafish model for secreting pheochromocytomas and paragangliomas.

快速构建sdhb功能缺失斑马鱼模型,用于研究分泌性嗜铬细胞瘤和副神经节瘤

阅读:17
作者:Parisien-La Salle S, Nobilleau F, da Silva Babinet A, Lamontagne J, Labrecque M, Rampal B, Mas C, Liao M, Barragan Torres V A, Corbeil G, Chatel-Chaix L, Dona M, Tétreault M, Bourdeau I, Samarut É
Genotype plays a central role in the comprehensive management of pheochromocytomas and paragangliomas, highlighting the critical need for specific in vivo genetic models. Yet, animal models fall short of fully recapitulating the biological complexity of these tumours. We generated first-generation loss-of-function zebrafish models for sdhb, a canonical PPGL-associated gene, using CRISPR/Cas9. Sdhb-CRISPants exhibit increased heart rates, reduced swimming activity and premature death. In whole fish extracts, normetanephrine (NM), metanephrine (MN), and dopamine (DA) levels were about three times higher in sdhb CRISPants than in control larvae. In the bathing medium, NM and MN were also significantly elevated, along with 3-MT. Complementary metabolic and transcriptomic profiling revealed that sdhb CRISPants exhibit a clear signature of Complex II dysfunction and upregulation of genes involved in the hypoxia response, angiogenesis, stress response, and glycolysis. Our work validates the relevance of CRISPant zebrafish models to study the pathogenicity of PPGL-causing genetic variants in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。