Starch-binding domain-containing protein 1 (Stbd1) is a glycogen-binding protein which localizes to the endoplasmic reticulum (ER) membrane and ER-mitochondria contact sites (ERMCs). The protein undergoes N-myristoylation, which is a major determinant of its subcellular targeting. Stbd1 has been implicated in the control of glucose homeostasis, as evidenced by the finding that mice with targeted inactivation of Stbd1 display insulin resistance associated with increased ERMCs in the liver. In the present study, we addressed the effects of increased Stbd1 expression levels on insulin signaling. We show that Stbd1 overexpression enhances cellular sensitivity to insulin and improves insulin resistance in an in vitro hepatocyte cell model. We further demonstrate that increased Stbd1 expression levels are associated with enhanced activation of the AMP-activated protein kinase (AMPK), which is a central regulator of metabolism and an attractive therapeutic target for metabolic disorders related to insulin resistance, such as type 2 diabetes (T2D). The activation of AMPK signaling and the improved cellular response to insulin induced by Stbd1 overexpression occurred independently of N-myristoylation and associated changes in the number of ERMCs, glycogen levels, mitochondrial calcium, mitochondrial morphology, and respiratory function. Collectively, our findings uncover a new level of interaction between Stbd1 and AMPK, with Stbd1 acting as an upstream activator of AMPK signaling. Given that first-line drug treatments for insulin resistance and T2D are known activators of the AMPK pathway, these findings may provide a new perspective for the development of more effective therapeutic strategies.
Stbd1 stimulates AMPK signaling and alleviates insulin resistance in an in vitro hepatocyte model.
Stbd1 可刺激 AMPK 信号传导,并在体外肝细胞模型中缓解胰岛素抵抗
阅读:5
作者:Theodoulou Andria, Speckmann Thilo, Potamiti Louiza, Baba Otto, Morita Tsuyoshi, Drousiotou Anthi, Panayiotidis Mihalis I, Schürmann Annette, Petrou Petros P
| 期刊: | FEBS Journal | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Jun;292(11):2882-2901 |
| doi: | 10.1111/febs.70040 | 研究方向: | 细胞生物学 |
| 信号通路: | AMPK | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
