ADAPT-3D: Accelerated Deep Adaptable Processing of Tissue for 3-Dimensional Fluorescence Tissue Imaging for Research and Clinical Settings.

ADAPT-3D:用于研究和临床环境的三维荧光组织成像的加速深度适应性组织处理

阅读:3
作者:Lee Daniel D, Davis Deanna L, Smyth Leon C D, Telfer Kevin A, Ravindran Rahul, Czepielewski Rafael S, Huckstep Christopher G, Du Siling, Kurashima Kento, Jain Ajay K, Kipnis Jonathan, Zinselmeyer Bernd H, Randolph Gwendalyn J
Light sheet microscopy and preparative clearing methods that improve light penetration in 3D tissues have revolutionized imaging in biomedical research. While most clearing methods focus on removing molecules that scatter light, the methods generally involve immersing tissues in solutions that minimize refraction of light to enhance detection of fluorescent signal deeper into tissues. Here, we developed a new tissue preparative method called ADAPT-3D with broad applicability across species and tissue types. This method enables efficient antibody staining and detection of endogenous fluorophores and offers advantages in terms of speed at which tissue staining and clearing is achieved. In about 4 days from tissue harvest to imaging, human intestinal tissue could be Axed, decolored and delipidated to remove light-interfering substances and stained with antibodies for imaging. In the intact mouse skull and brain, involving an 8-day protocol from tissue harvest to completion of imaging, the aqueous and non-shrinking ADAPT-3D method allowed the specialized channels between skull and underlying tissue to be detected without meningeal tearing. Overall, ADAPT-3D provides a highly versatile preparative method for 3D fixed tissue imaging with superior time savings, sensitivity and preservation of tissue morphology compared with previously described methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。