Squamous cell carcinoma (SCC) of the thyroid is a rare tumor that is classified as an anaplastic thyroid cancer (ATC) due to its similar unresponsiveness to chemoradiotherapy and an outstandingly poor prognosis. Due to its rarity, current knowledge about this tumor is mostly based on single-case reports. The tumor-cell-origin and molecular pathogenesis remain unclear, although the presence of BRAF mutations in some cases suggest it may evolve from papillary thyroid carcinoma (PTC). Here we provide direct evidence of derivation of SCC of the thyroid from PTC, based on a unique combination of likely pathogenic mutations in KEAP1, STK11 (LKB1), and RB1 found in both tumor components, along with loss of one copy of chromosome 11 and additional somatic mutations in the SCC tumor. Transdifferentiation from PTC to SCC was also evident by immunohistochemistry. Out of eight attempted patient-derived xenografts (PDX) from advanced thyroid cancers, only one derived from thyroid SCC successfully engrafted in immunodeficient NOG mice. Untreated PDXs showed high Ki67 indices but did not reproduce the conspicuous stromal invasion of CDH1(low)/SNAI2(+)/CDH2(+) cells that characterized the primary tumor. Based on the mutation profile (NFE2L2, PIK3CA, CDKN2A, and TP53), experiments were designed to evaluate targeted drug therapy using third-passage PDX transplants. The combination of TRK and PI3K inhibitors, cabozantinib and GDC-0326, additively reduced PDX growth by nearly 90%. Remarkably, CB-839 (telaglenastat), a glutaminase inhibitor targeting metabolic rewiring downstream of NRF2 activation, was equally effective. Both combined treatment with cabozantinib + GDC-0326 and CB-839 monotherapy diminished the expression of NQO1, an NRF2 transcriptional target, in tumor cells. Glutaminase inhibition further promoted squamous differentiation in engrafted tumors. Both investigated SCC tumors were negative for BRAFV600E or any other common driver mutation of thyroid cancer. Collectively, these findings indicate that aberrant activation of the KEAP1/NRF2 pathway due to somatic mutations is a previously unrecognized feature of thyroid SCC and suggest that glutaminase inhibition may serve as a potential therapeutic option for this subgroup of ATC patients. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Involvement of KEAP1/NRF2 pathway in non-BRAF mutated squamous cell carcinoma of the thyroid.
KEAP1/NRF2通路参与非BRAF突变型甲状腺鳞状细胞癌的发生发展
阅读:5
作者:Schoultz Elin, Dahlberg Jakob, Nilsson Lisa M, Dzanan Jozefina J, Carlsson Therese, Dahr Niklas, Andersson Ellinor, Muhammad Ghayeb, Muth Andreas, Elias Erik, Fagman Henrik, Sayin Volkan I, Nilsson Jonas A, Nilsson Mikael
| 期刊: | Journal of Pathology | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 Aug;266(4-5):481-494 |
| doi: | 10.1002/path.6444 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
