Enalapril mitigates senescence and aging-related phenotypes in human cells and mice via pSmad1/5/9-driven antioxidative genes.

依那普利通过 pSmad1/5/9 驱动的抗氧化基因减轻人类细胞和小鼠的衰老和衰老相关表型

阅读:6
作者:Lyu Wencong, Wang Haochen, Du Zhehao, Wei Ran, He Jianuo, Meng Fanju, Bi Jinlong, Zhang Lijun, Zhang Chao, Guan Yiting, Tao Wei
Aging increases the risk of a myriad of chronic diseases, which are expensive and difficult to treat owing to their various risk factors. Repurposing existing medications has accelerated the development of therapies aimed at slowing aging. In this study, using IMR90 cells and aged mice, we revealed that enalapril, a drug widely prescribed for hypertension, can improve both cellular senescence and individual health. Mechanistically, phosphorylated Smad1/5/9 act as pivotal mediators of the anti-senescence properties of enalapril. It stimulates downstream genes involved in cell cycle regulation and antioxidative defenses, facilitating cell proliferation and diminishing the production of reactive oxygen species (ROS), thus increasing the antioxidative ability of enalapril. At the organismal level, enalapril has been shown to bolster the physiological performance of various organs; it notably enhances memory capacity and renal function and relieves lipid accumulation. Our work highlights the potential of enalapril to augment antioxidative defenses and combat the effects of aging, thereby indicating its promise as a treatment strategy for aging-associated diseases and its use for healthy aging.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。