Impact of aging on spermatogenic function and reproductive outcomes in repro57 heterozygous male mice: A model for age-related infertility.

衰老对 repro57 杂合子雄性小鼠精子发生功能和生殖结果的影响:年龄相关性不育的模型

阅读:4
作者:Aoki Yuto, Wakamatsu Misaki, Sono Nanami, Xiao Wei, Ishii Emi, Nagai Takeshi, Nagai Yasushi, Fujiwara Yasuhiro, Kunieda Tetsuo, Otsuki Junko
PURPOSE: This study aims to investigate the histological changes, sperm parameters, and their impact on embryo development rates and offspring numbers in advanced-age male repro57 heterozygous mice, corresponding to approximately 40 years of age in humans. METHODS: Sperm parameters were assessed in both young and advanced-age repro57 heterozygous mice, as well as in young and advanced-age wild-type mice. Additionally, testis weight and histological analysis of seminiferous tubules were conducted to identify degenerative changes. Male mice from each group were mated with young wild-type females to compare offspring numbers, and in vitro fertilization (IVF) was used to evaluate fertilization and blastocyst formation rates. RESULTS: No significant differences in sperm concentration and motility were observed between young and aged wild-type mice or between young wild-type and young repro57 heterozygous mice. However, advanced-age repro57 heterozygous mice exhibited significantly lower sperm parameters and testis weight compared to advanced-age wild-type mice. Histological analysis revealed increased Sertoli cell vacuolation in the seminiferous tubules of advanced-age repro57 heterozygous mice. Additionally, these advanced-age mice exhibited significantly lower blastocyst formation rates and produced fewer offspring compared to advanced-age wild-type mice. CONCLUSION: Advanced reproductive aging in repro57 heterozygous male mice is associated with marked senescence-like degenerative changes, leading to a decline in offspring numbers, attributed to increased Sertoli cell vacuolation and diminished sperm quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。