Emerging evidence from recent studies demonstrates that the FGL1/LAG-3 interaction axis plays a crucial role in mediating tumor immune evasion mechanisms, particularly through the suppression of T lymphocyte effector functions. However, the role of FGL1 in prostate cancer (PCa) remains unclear. Data was downloaded from The Cancer Genome Atlas (TCGA) database, and subjected to differential expression analysis. Single gene differential analysis to determine the correlation between FGL1 and DNAJC12 expression levels in prostate cancer. The expression of FGL1 was silenced by siRNA in PC3 prostate cancer cells. Lentiviruses infected DU145 to overexpress FGL1. Cell proliferation, apoptosis and EMT-related markers were detected in vitro. Animal experiments further confirmed the effect of FGL1 on prostate cancer. Up-regulated gene FGL1 was identified as the selected gene in this study among 3011 Differentially expressed genes. FGL1 had the highest positive relation with DNAJC12. The OS of PCa patients with high expression of FGL1 was significantly shorter. After silencing FGL1, PC3 cell proliferation was inhibited by 0.58-fold, while apoptosis increased by 16%, and the expression of cleaved-caspase-3 increased, while the expression of DNAJC12 and BCL-2 decreased. After overexpression of FGL1, the number of DU145 cells increased by 2.05-fold, the expression of cleaved-caspase-3 was inhibited, E-cadherin expression decreased, while N-cadherin and Vimentin expression increased. Tumor growth was inhibited, and the expression of FN1, n-cadherin, Vimentin and β-catenin decreased, while the expression of E-cadherin increased after silencing FGL1. Silencing FGL1 promotes prostate cancer cell apoptosis and inhibits EMT progression. FGL1 may be an independent prognostic marker and therapeutic target in PCa.
Silencing FGL1 promotes prostate cancer cell apoptosis and inhibits EMT progression.
沉默 FGL1 可促进前列腺癌细胞凋亡并抑制 EMT 进程
阅读:4
作者:Zhu Shuaizhi, Kou Zengshun, Xiao Chengcheng, Wang Lu, Zhu Jiaxi, Zheng Yu, Zhu Hai
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 6; 15(1):19886 |
| doi: | 10.1038/s41598-025-04717-7 | 研究方向: | 细胞生物学 |
| 疾病类型: | 前列腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
